Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques

Type: Article

Publication Date: 2012-01-12

Citations: 49

DOI: https://doi.org/10.1186/1687-6180-2012-6

Abstract

We advocate a compressed sensing strategy that consists of multiplying the signal of interest by a wide bandwidth modulation before projection onto randomly selected vectors of an orthonormal basis. Firstly, in a digital setting with random modulation, considering a whole class of sensing bases including the Fourier basis, we prove that the technique is universal in the sense that the required number of measurements for accurate recovery is optimal and independent of the sparsity basis. This universality stems from a drastic decrease of coherence between the sparsity and the sensing bases, which for a Fourier sensing basis relates to a spread of the original signal spectrum by the modulation (hence the name "spread spectrum"). The approach is also efficient as sensing matrices with fast matrix multiplication algorithms can be used, in particular in the case of Fourier measurements. Secondly, these results are confirmed by a numerical analysis of the phase transition of the l1- minimization problem. Finally, we show that the spread spectrum technique remains effective in an analog setting with chirp modulation for application to realistic Fourier imaging. We illustrate these findings in the context of radio interferometry and magnetic resonance imaging.

Locations

  • EURASIP Journal on Advances in Signal Processing - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Infoscience (Ecole Polytechnique FĂ©dĂ©rale de Lausanne) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Spread Spectrum for Universal Compressive Sampling 2011 Gilles Puy
Pierre Vandergheynst
RĂ©mi Gribonval
Yves Wiaux
+ PDF Chat Spread Spectrum Magnetic Resonance Imaging 2011 Gilles Puy
José P. Marques
Rolf Gruetter
Jean‐Philippe Thiran
Dimitri Van De Ville
Pierre Vandergheynst
Yves Wiaux
+ PDF Chat Spread spectrum for interferometric and magnetic resonance imaging 2010 Gilles Puy
Yves Wiaux
Rolf Gruetter
Jean‐Philippe Thiran
Dimitri Van De Ville
Pierre Vandergheynst
+ PDF Chat Spread spectrum for imaging techniques in radio interferometry 2009 Yves Wiaux
Gilles Puy
Y. Boursier
Pierre Vandergheynst
+ Compressive imaging: stable and robust recovery from variable density frequency samples 2012 Felix Krahmer
Rachel Ward
+ Compressive sensing: a paradigm shift in signal processing 2008 Olga Holtz
+ Sampling Theory: Beyond Bandlimited Systems 2015 Yonina C. Eldar
+ PDF Chat BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING 2017 Ben Adcock
Anders C. Hansen
Clarice Poon
Bogdan Roman
+ PDF Chat Compressed sensing for wide-field radio interferometric imaging 2011 J. D. McEwen
Yves Wiaux
+ PDF Chat Structured Compressed Sensing: From Theory to Applications 2011 Marco F. Duarte
Yonina C. Eldar
+ Breaking the coherence barrier: A new theory for compressed sensing 2013 Ben Adcock
Anders C. Hansen
Clarice Poon
Bogdan Roman
+ PDF Chat Compressive sampling of pulse trains: Spread the spectrum! 2009 Farid Movahedi Naini
RĂ©mi Gribonval
Laurent Jacques
Pierre Vandergheynst
+ A Survey of Compressed Sensing 2015 Holger Boche
Robert Calderbank
Gitta Kutyniok
Jan VybĂ­ral
+ A survey on compressive sensing: classical results and recent advancements 2020 Ahmad Mousavi
Mehdi Rezaee
Ramin Ayanzadeh
+ Compressed Sensing: Theory and Applications 2012 Gitta Kutyniok
+ Breaking the coherence barrier: asymptotic incoherence and asymptotic sparsity in compressed sensing 2013 Ben Adcock
Anders C. Hansen
Clarice Poon
Bogdan Roman
+ A Survey on Compressive Sensing: Classical Results and Recent Advancements 2019 Ahmad Mousavi
Mehdi Rezaee
Ramin Ayanzadeh
+ A Tutorial Introduction Compressed Sensing 2019 M. Vidyasagar
+ Compressive Sensing with Low Precision Data Representation: Radio Astronomy and Beyond. 2018 Nezihe Merve GĂŒrel
Kaan Kara
Dan Alistarh
Ce Zhang
+ Benchmarking Compressed Sensing, Super-Resolution, and Filter Diagonalization 2015 Thomas Markovich
Samuel M. Blau
Jacob N. Sanders
Alán Aspuru‐Guzik

Works That Cite This (17)

Action Title Year Authors
+ PDF Chat Matching Pursuits with random sequential subdictionaries 2012 Manuel Moussallam
Laurent Daudet
Gaël Richard
+ PDF Chat Modulated Unit-Norm Tight Frames for Compressed Sensing 2015 Peng Zhang
Lu Gan
Sumei Sun
Cong Ling
+ PDF Chat Uniform Recovery Bounds for Structured Random Matrices in Corrupted Compressed Sensing 2018 Peng Zhang
Lu Gan
Cong Ling
Sumei Sun
+ PDF Chat An Analysis of Block Sampling Strategies in Compressed Sensing 2016 Jérémie Bigot
Claire Boyer
Pierre Weiss
+ PDF Chat On Variable Density Compressive Sampling 2011 Gilles Puy
Pierre Vandergheynst
Yves Wiaux
+ PDF Chat Time for dithering: fast and quantized random embeddings via the restricted isometry property 2017 Laurent Jacques
Valerio Cambareri
+ PDF Chat Compressive schlieren deflectometry 2013 P. Sudhakar
Laurent Jacques
Xavier Dubois
Philippe Antoine
Luc Joannes
+ PDF Chat Through the haze: a non-convex approach to blind gain calibration for linear random sensing models 2018 Valerio Cambareri
Laurent Jacques
+ Iteratively Reweighted <named-content content-type="math" xlink:type="simple"><inline-formula><tex-math notation="LaTeX">$\ell_1$</tex-math></inline-formula> </named-content> Approaches to Sparse Composite Regularization 2015 Rizwan Ahmad
Philip Schniter
+ PDF Chat On the Absence of Uniform Recovery in Many Real-World Applications of Compressed Sensing and the Restricted Isometry Property and Nullspace Property in Levels 2017 Alexander Bastounis
Anders C. Hansen

Works Cited by This (17)

Action Title Year Authors
+ PDF Chat The<i>Spitzer</i>Survey of Stellar Structure in Galaxies 2010 Kartik Sheth
Michael W. Regan
J. L. Hinz
A. Gil de Paz
KarĂ­n MenĂ©ndez‐Delmestre
J. C. Muñoz-Mateos
Mark Seibert
Taehyun Kim
E. Laurikainen
H. Salo
+ PDF Chat Spread spectrum for interferometric and magnetic resonance imaging 2010 Gilles Puy
Yves Wiaux
Rolf Gruetter
Jean‐Philippe Thiran
Dimitri Van De Ville
Pierre Vandergheynst
+ PDF Chat Sparsity and incoherence in compressive sampling 2007 Emmanuel J. CandĂšs
Justin Romberg
+ PDF Chat Compressive sampling of pulse trains: Spread the spectrum! 2009 Farid Movahedi Naini
RĂ©mi Gribonval
Laurent Jacques
Pierre Vandergheynst
+ Counting faces of randomly projected polytopes when the projection radically lowers dimension 2008 David L. Donoho
Jared Tanner
+ PDF Chat Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? 2006 Emmanuel J. CandĂšs
Terence Tao
+ PDF Chat A Probabilistic and RIPless Theory of Compressed Sensing 2011 Emmanuel J. CandĂšs
Yaniv Plan
+ PDF Chat Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals 2010 Joel A. Tropp
Jason N. Laska
Marco F. Duarte
Justin Romberg
Richard G. Baraniuk
+ PDF Chat Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information 2006 Emmanuel J. CandĂšs
Justin Romberg
Terence Tao
+ PDF Chat The application of compressive sampling to radio astronomy 2011 F. Li
T. J. Cornwell
Frank de Hoog