Ergodic complex structures on hyperkähler manifolds

Type: Article

Publication Date: 2015-01-01

Citations: 35

DOI: https://doi.org/10.1007/s11511-015-0131-z

Abstract

Let M be a compact complex manifold. The corresponding Teichmüller space Teich is the space of all complex structures on M up to the action of the group Diff0(M) of isotopies. The mapping class group Γ:=Diff(M)/Diff0(M) acts on Teich in a natural way. An ergodic complex structure is a complex structure with a Γ-orbit dense in Teich. Let M be a complex torus of complex dimension ≥2 or a hyperkähler manifold with b2>3. We prove that M is ergodic, unless M has maximal Picard rank (there are countably many such M). This is used to show that all hyperkähler manifolds are Kobayashi non-hyperbolic.

Locations

  • Acta Mathematica - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Ergodic complex structures on hyperkahler manifolds 2013 Misha Verbitsky
+ Ergodic complex structures on hyperkahler manifolds 2013 Misha Verbitsky
+ Teichmuller spaces, ergodic theory and global Torelli theorem 2014 Misha Verbitsky
+ Ergodic complex structures on hyperkahler manifolds: an erratum 2017 Verbitsky Misha
+ On the Kobayashi Pseudometric, Complex Automorphisms and Hyperkähler Manifolds 2017 Fedor Bogomolov
Ljudmila Kamenova
Steven Lu
Misha Verbitsky
+ Kähler structure on certain $C^*$-dynamical systems and the noncommutative even dimensional tori 2017 Satyajit Guin
+ On the Kobayashi pseudometric, complex automorphisms and hyperkaehler manifolds 2016 Fedor Bogomolov
Ljudmila Kamenova
Steven Lu
Misha Verbitsky
+ Complex structures of toric hyperkähler manifolds 2004 Yosihiko Aoto
+ Morrison-Kawamata cone conjecture for hyperkähler manifolds 2017 Ekaterina Amerik
Misha Verbitsky
+ Morrison-Kawamata cone conjecture for hyperkahler manifolds 2014 Ekaterina Amerik
Misha Verbitsky
+ Morrison-Kawamata cone conjecture for hyperkahler manifolds 2014 Ekaterina Amerik
Misha Verbitsky
+ PDF Chat Kobayashi pseudometric on hyperkähler manifolds 2014 Ljudmila Kamenova
Steven Lu
Misha Verbitsky
+ PDF Chat COMPATIBILITY BETWEEN NON-KÄHLER STRUCTURES ON COMPLEX (NIL)MANIFOLDS 2022 Liviu Ornea
Alexandra Otiman
Miron Stanciu
+ Hyperkaehler manifolds with torsion obtained from hyperholomorphic bundles 2003 Misha Verbitsky
+ New structures on tangent bundles 1998 Manabu Tahara
Lieven Vanhecke
Yoshiyuki Watanabe
+ Complex structures on tangent bundles of Riemannian manifolds 1991 Róbert Szőke
+ Kähler Manifolds 2007 Dominic Joyce
+ Complex Structures on the Tangent Bundle of Riemannian Manifolds 1993 László Lempert
+ Equivariant almost complex structures on quasitoric manifolds 2009 Andrei Kustarev
+ PDF Chat Hyperkähler manifolds with torsion obtained from hyperholomorphic bundles 2003 Misha Verbitsky