Energy conservation issues in the numerical solution of Hamiltonian PDEs

Type: Article

Publication Date: 2015-01-01

Citations: 7

DOI: https://doi.org/10.1063/1.4912306

Abstract

In this paper we show that energy conserving methods, in particular those in the class of Hamiltonian Boundary Value Methods, can be conveniently used for the numerical solution of Hamiltonian Partial Differential Equations, after a suitable space semi-discretization.

Locations

  • AIP conference proceedings - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ Energy conserving methods for Hamiltonian PDEs based on spectral space decomposition 2014 Luigi Brugnano
Gianluca Frasca-Caccia
Felice Iavernaro
+ Energy conservation in the numerical solution of Hamiltonian boundary value problems 2013 Pierluigi Amodio
Luigi Brugnano
Felice Iavernaro
+ PDF Chat Energy-conserving methods for Hamiltonian boundary value problems and applications in astrodynamics 2014 Pierluigi Amodio
Luigi Brugnano
Felice Iavernaro
+ Energy-conserving Hamiltonian Boundary Value Methods for the numerical solution of the Korteweg–de Vries equation 2018 Luigi Brugnano
Gianmarco Gurioli
Yajuan Sun
+ Recent advances in the numerical solution of conservative problems 2012 Luigi Brugnano
Felice Iavernaro
+ Hamiltonian BVMs (HBVMs): A Family of “Drift Free” Methods for Integrating polynomial Hamiltonian problems 2009 Luigi Brugnano
Felice Iavernaro
Donato Trigiante
Theodore E. Simos
George Psihoyios
Ch. Tsitouras
+ PDF Chat Spectrally accurate space-time solution of Hamiltonian PDEs 2018 Luigi Brugnano
Felice Iavernaro
J.I. Montijano
L. RĂĄndez
+ PDF Chat Energy-conserving methods for the nonlinear Schrödinger equation 2017 Luigi Barletti
Luigi Brugnano
Gianluca Frasca-Caccia
Felice Iavernaro
+ PDF Chat Space-time spectrally accurate HBVMs for Hamiltonian PDEs 2019 Luigi Brugnano
Felice Iavernaro
J.I. Montijano
L. RĂĄndez
+ Analysis of Hamiltonian Boundary Value Methods (HB- VMs) 2015
+ PDF Chat Analysis of spectral Hamiltonian boundary value methods (SHBVMs) for the numerical solution of ODE problems 2019 Pierluigi Amodio
Luigi Brugnano
Felice Iavernaro
+ Hamiltonian Boundary Value Methods (HBVMs) for functional differential equations with piecewise continuous arguments 2024 Gianmarco Gurioli
Weijie Wang
Xiaoqiang Yan
+ PDF Chat On the effectiveness of spectral methods for the numerical solution of multi-frequency highly oscillatory Hamiltonian problems 2018 Luigi Brugnano
J.I. Montijano
L. RĂĄndez
+ Long-time analysis of Hamiltonian partial differential equations and their discretizations 2010 Ludwig J. Gauckler
+ Time Integration Methods for Space-discretized Equations 2007 Charles Hirsch
+ A meshless scheme for Hamiltonian partial differential equations with conservation properties 2017 Zhengjie Sun
Wenwu Gao
+ PDF Chat Spectrally accurate energy‐preserving methods for the numerical solution of the “good” Boussinesq equation 2019 Luigi Brugnano
Gianmarco Gurioli
Chengjian Zhang
+ Finite volume schemes for Hamilton-Jacobi equations 1999 Georgios T. Kossioris
Ch. Makridakis
Panagiotis E. Souganidis
+ A note on energy conservation for Hamiltonian systems using continuous time finite elements 2001 Peter Hansbo
+ Hamiltonian boundary value methods (HBVMs) and their efficient implementation 2014 Luigi Brugnano
Gianluca Frasca-Caccia
Felice Iavernaro