On fusion categories

Type: Article

Publication Date: 2005-09-01

Citations: 754

DOI: https://doi.org/10.4007/annals.2005.162.581

Abstract

Using a variety of methods developed in the literature (in particular, the theory of weak Hopf algebras), we prove a number of general results about fusion categories in characteristic zero.We show that the global dimension of a fusion category is always positive, and that the S-matrix of any (not necessarily hermitian) modular category is unitary.We also show that the category of module functors between two module categories over a fusion category is semisimple, and that fusion categories and tensor functors between them are undeformable (generalized Ocneanu rigidity).In particular the number of such categories (functors) realizing a given fusion datum is finite.Finally, we develop the theory of Frobenius-Perron dimensions in an arbitrary fusion category.At the end of the paper we generalize some of these results to positive characteristic. Results on squared norms, global dimensions, weak Hopf algebras, and Ocneanu rigidityLet k be an algebraically closed field.By a multi-fusion category over k we mean a rigid semisimple k-linear tensor category C with finitely many simple objects and finite dimensional spaces of morphisms.If the unit object 1 of

Locations

  • Annals of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ On fusion categories 2002 Pavel Etingof
Dmitri Nikshych
Viktor Ostrik
+ On fusion categories 2002 Pavel Etingof
Dmitri Nikshych
Viktor Ostrik
+ None 2004 Pavel Etingof
Dmitri Nikshych
Viktor Ostrik
+ Computations in symmetric fusion categories in characteristic p 2015 Pavel Etingof
Victor Ostrik
Siddharth Venkatesh
+ Computations in symmetric fusion categories in characteristic p 2015 Pavel Etingof
Victor Ostrik
Siddharth Venkatesh
+ PDF Chat Lectures on tensor categories 2008 Damien Calaque
Pavel Etingof
+ Fusion categories 2017 Vladimir Turaev
Alexis Virelizier
+ Lectures on tensor categories 2008 Damien Calaque
Pavel Etingof
+ Lectures on tensor categories 2004 Damien Calaque
Pavel Etingof
+ PDF Chat On formal codegrees of fusion categories 2009 Victor Ostrik
+ On formal codegrees of fusion categories 2008 Victor Ostrik
+ On braided fusion categories I 2009 Vladimir Drinfeld
Shlomo Gelaki
Dmitri Nikshych
Victor Ostrik
+ On braided fusion categories I 2009 Vladimir Drinfeld
Shlomo Gelaki
Dmitri Nikshych
Victor Ostrik
+ Tensor functors between Morita duals of fusion categories 2014 César Galíndo
Julia Yael Plavnik
+ Tensor functors between Morita duals of fusion categories 2014 César Galíndo
Julia Yael Plavnik
+ PDF Chat On Frobenius-Schur exponent bounds 2024 Agustina Czenky
Julia Yael Plavnik
Andrew Schopieray
+ PDF Chat Tensor functors between Morita duals of fusion categories 2016 César Galíndo
Julia Yael Plavnik
+ Finite tensor categories 2003 Pavel Etingof
Viktor Ostrik
+ PDF Chat Finite tensor categories 2015 Pavel Etingof
Shlomo Gelaki
Dmitri Nikshych
Victor Ostrik
+ On the center of fusion categories 2012 Alain Bruguières
Alexis Virelizier