Repellers for real analytic maps

Type: Article

Publication Date: 1982-03-01

Citations: 457

DOI: https://doi.org/10.1017/s0143385700009603

Abstract

Abstract The purpose of this note is to prove a conjecture of D. Sullivan that when the Julia set J of a rational function f is hyperbolic, the Hausdorff dimension of J depends real analytically on f . We shall obtain this as corollary of a general result on repellers of real analytic maps (see corollary 5).

Locations

  • Ergodic Theory and Dynamical Systems - View - PDF

Similar Works

Action Title Year Authors
+ Repellers for real analytic maps 1995 David Ruelle
+ The Hausdorff dimension of Julia sets of hyperbolic meromorphic functions II 2000 Gwyneth M. Stallard
+ Hausdorff measures on Julia sets of subexpanding rational maps 1991 Manfred Denker
Mariusz Urbański
+ PDF Chat AN IMPROVEMENT OF J: RIVERA-LETELIER RESULT ON WEAK HYPERBOLICITY ON PERIODIC ORBITS FOR POLYNOMIALS 2005 Feliks Przytycki
+ Variation of Hausdorff dimension of Julia sets 1993 Thomas Ransford
+ Hausdorff dimension of Julia sets of complex Hénon mappings 1996 Alberto Verjovsky
Hua Ming Wu
+ Hyperbolic dimension and radial Julia sets of transcendental functions 2008 Lasse Rempe
+ On the forcing relation for surface homeomorphisms . Multidimensional nonhyperbolic attractors . Representation theory and sheaves on the Bruhat-Tits building . Metric diophantine approximation in Julia sets of expanding rational maps 1997 Jérôme Los
Marcelo Viana
Peter Schneider
Ulrich Stuhler
Richard Hill
Sanju Velani
+ PDF Chat None 2003 Juan Rivera‐Letelier
+ The Hausdorff dimension of Julia sets of hyperbolic meromorphic functions 1999 Gwyneth M. Stallard
+ The dynamics of hyperbolic rational maps with Cantor Julia sets 2019 Atsushi Kameyama
+ Density of hyperbolicity for rational maps with Cantor Julia sets 2011 Wenjuan Peng
Yongcheng Yin
Yu Zhai
+ PDF Chat Lower bounds on the Hausdorff dimension of some Julia sets 2023 Artem Dudko
Igors Gorbovickis
Warwick Tucker
+ PDF Chat The Hausdorff dimension of Julia sets of meromorphic functions in the Speiser class 2022 Walter Bergweiler
Weiwei Cui
+ The Hausdorff dimension of Julia sets of meromorphic functions in the Speiser class 2021 Walter Bergweiler
Weiwei Cui
+ Proof of the Hyperplane Zeros Conjecture of Lagarias and Wang 2007 Wayne Lawton
+ The Hausdorff Dimension of Julia Sets of Entire Functions IV 2000 Gwyneth M. Stallard
+ Julia sets of hyperbolic rational maps have positive Fourier dimension 2021 Gaétan Leclerc
+ PDF Chat Julia Sets of Hyperbolic Rational Maps have Positive Fourier Dimension 2022 Gaétan Leclerc
+ PDF Chat Density of hyperbolicity for classes of real transcendental entire functions and circle maps 2015 Lasse Rempe
Sebastian van Strien