Large coupling behaviour of the Lyapunov exponent for tight binding one-dimensional random systems

Type: Article

Publication Date: 1983-05-11

Citations: 11

DOI: https://doi.org/10.1088/0305-4470/16/7/002

Abstract

Studies the Lyapunov exponent gamma lambda (E) of (hu)(n)=u(n+1)+u(n-1)+ lambda V(n)u(n) in the limit as lambda to infinity where V is a suitable random potential. The authors prove that gamma lambda (E) approximately ln lambda as lambda to infinity uniformly as E/ lambda runs through compact sets. They also describe a formal expansion (to order lambda -2) for random and almost periodic potentials.

Locations

  • Journal of Physics A Mathematical and General - View
  • CaltechAUTHORS (California Institute of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Lyapunov exponents of random walks in small random potential: the upper bound 2015 Thomas Mountford
Jean-Christophe Mourrat
+ Lyapunov exponents of random walks in small random potential: the upper bound 2014 Thomas Mountford
Jean-Christophe Mourrat
+ PDF Chat Strict comparison for the Lyapunov exponents of the simple random walk in random potentials 2023 Naoki Kubota
+ Lyapunov Exponents for Random Dynamical Systems 2009 Thai Son Doan
+ RANDOM LYAPUNOV EXPONENTS 1988
+ RANDOM LYAPUNOV EXPONENTS 1990
+ PDF Chat Lyapunov exponents of Green’s functions for random potentials tending to zero 2010 Elena Kosygina
Thomas Mountford
Martin Zerner
+ Strict comparison for the Lyapunov exponents of the simple random walk in random potentials 2020 Naoki Kubota
+ The Distribution of Lyapunov Exponents for Large Random Matrices 1993 Marco Isopi
Charles M. Newman
+ Lyapunov exponents for continuous random transformations 2009 Yujun Zhu
Jinlian Zhang
+ Asymptotic Lyapunov exponents for large random matrices 2016 Hoi H. Nguyen
+ Asymptotic Lyapunov exponents for large random matrices 2016 Hoi H. Nguyen
+ PDF Chat Critical exponent for the Lyapunov exponent and phase transitions—the generalized Hamiltonian mean-field model 2020 M F P Silva
T. M. Rocha Filho
Yves Elskens
+ Lyapunov Exponents 1998 Alain‐Sol Sznitman
+ PDF Chat Scaling laws for the largest Lyapunov exponent in long-range systems: A random matrix approach 2001 Celia Anteneodo
RaĂșl O. Vallejos
+ Lyapunov Exponents of Brownian Motion: Decay Rates for Scaled Poissonian Potentials and Bounds 2011 Johannes Rueß
+ Lyapunov Exponents of Brownian Motion: Decay Rates for Scaled Poissonian Potentials and Bounds 2011 Johannes Rueß
+ On the continuity of lyapunov exponents of random walks in random potentials 2013 Thị Thu Hiền LĂȘ
+ PDF Chat Low Density Expansion for Lyapunov Exponents 2006 Hermann Schulz‐Baldes
+ PDF Chat Lyapunov Exponents of Random Walks in Small Random Potential: The Lower Bound 2013 Thomas Mountford
Jean-Christophe Mourrat