Type: Article
Publication Date: 2015-09-08
Citations: 4
DOI: https://doi.org/10.1017/s0963548315000164
We show that for any coprime integers $\lambda_1 , \ldots , \lambda_k$ and any finite $A \subset \mathbb{Z}$, one has $$|\lambda_1 \cdot A + \ldots + \lambda_k \cdot A| \geq (|\lambda_1| + \ldots + |\lambda_k|)|A|- C,$$ where $C$ only depends on $\lambda_1 , \ldots , \lambda_k$.