Difference Calogero–Moser systems and finite Toda chains

Type: Article

Publication Date: 1995-03-01

Citations: 66

DOI: https://doi.org/10.1063/1.531122

Abstract

Limits of a recently introduced n-particle difference Calogero–Moser system with elliptic potentials are studied. We obtain hyperbolic and rational difference Calogero–Moser systems with an eight-parameter external field and (finite) difference Toda chains with four-parameter potentials acting on the boundary particles. Hamiltonians for a number of known integrable n-particle systems, such as Ruijsenaars’ relativistic Calogero–Moser and Toda models and their generalizations associated with classical root systems, can be seen as special cases of the Hamiltonians considered in this paper.

Locations

  • Journal of Mathematical Physics - View
  • Wiardi Beckman Foundation (Wiardi Beckman Foundation) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Integrability of difference Calogero–Moser systems 1994 J. F. van Diejen
+ QUANTUM CALOGERO-MOSER MODELS FOR ANY ROOT SYSTEM 2001 Ryu Sasaki
+ PDF Chat Deformations of Calogero-Moser systems and finite Toda chains 1994 J. F. van Diejen
+ PDF Chat A gauge theory of the Hamiltonian reduction for the rational Calogero–Moser system 2001 Cezary Gonera
Piotr Kosiński
Paweł Maślanka
+ PDF Chat On Cherednik and Nazarov-Sklyanin large N limit construction for integrable many-body systems with elliptic dependence on momenta 2021 A. Grekov
A. Zotov
+ PDF Chat Non-crystallographic reduction of generalized Calogero–Moser models 2006 Andreas Fring
Christian Korff
+ Elliptic integrable systems of Calogero-Moser type: A survey 2005 S. N. M. Ruijsenaars
+ On the status of DELL systems 2024 А. Миронов
А. Морозов
+ PDF Chat Cluster Toda Chains and Nekrasov Functions 2019 Mikhail Bershtein
Pavlo Gavrylenko
A. Marshakov
+ PDF Chat Calogero-Moser Models. IV: Limits to Toda Theory 1999 S. Pratik Khastgir
Ryu Sasaki
Kanehisa Takasaki
+ PDF Chat Arbitrary order, Hamiltonian conserving numerical solutions of Calogero and Toda systems 1991 Andrzej Marciniak
Donald Greenspan
+ Integrable Many-Body Systems via Inozemtsev Limit 2001 Yu. B. Chernyakov
A. Zotov
+ Integrable Many-Body Systems via Inozemtsev Limit 2001 A. Zotov
+ On the status of DELL systems 2023 А. Миронов
А. Морозов
+ PDF Chat Conservative difference formulations of Calogero and Toda Hamiltonian systems 1990 Daniel S. Greenspan
+ PDF Chat Field analogue of the Ruijsenaars-Schneider model 2022 A. Zabrodin
A. Zotov
+ PDF Chat The Lagrangian structure of Calogero’s goldfish model 2015 Umpon Jairuk
Sikarin Yoo-Kong
Монсит Танаситтикосол
+ PDF Chat Novel quantum states of the rational Calogero models without the confining interaction 2003 B. Basu-Mallick
Pijush K. Ghosh
Kumar S. Gupta
+ PDF Chat Elliptic Solutions to Difference Non-Linear Equations and Related Many-Body Problems 1998 I. M. Krichever
P. Wiegmann
A. Zabrodin
+ Elliptic solutions to difference non-linear equations and nested Bethe ansatz equations 1998 I. M. Krichever