Collective edge modes in fractional quantum Hall systems

Type: Article

Publication Date: 2004-07-28

Citations: 4

DOI: https://doi.org/10.1103/physrevb.70.035324

Abstract

Over the past few years one of us (Murthy) in collaboration with Shankar has developed an extended Hamiltonian formalism capable of describing the ground-state and low-energy excitations in the fractional quantum Hall regime. The Hamiltonian, expressed in terms of composite fermion operators, incorporates all the nonperturbative features of the fractional Hall regime, so that conventional many-body approximations such as Hartree-Fock and time-dependent Hartree-Fock are applicable. We apply this formalism to develop a microscopic theory of the collective edge modes in fractional quantum Hall regime. We present the results for edge mode dispersions at principal filling factors $\ensuremath{\nu}=1∕3$, $1∕5$, and $2∕5$ for systems with unreconstructed edges. The primary advantage of the method is that one works in the thermodynamic limit right from the beginning, thus avoiding the finite-size effects which ultimately limit exact diagonalization studies.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ PDF Chat Fractional Quantum Hall Effects 2020 Bertrand I. Halperin
J. K. Jain
+ PDF Chat Band structure of the fractional quantum Hall effect 1992 Gautam Dev
J. K. Jain
+ PDF Chat Excitations of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mstyle scriptlevel="1"><mml:mfrac bevelled="false"><mml:mn>5</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mstyle></mml:mrow></mml:math>fractional quantum Hall state and the generalized composite fermion picture 2010 George Simion
John J. Quinn
+ PDF Chat Composite fermions, edge currents, and the fractional quantum Hall effect 1995 George Kirczenow
Brad Johnson
+ PDF Chat Supersymmetric Hamiltonian approach to edge excitations in fractional quantum Hall effect 2007 Ming Yu
Xin Zhang
+ PDF Chat Testing the Topological Nature of the Fractional Quantum Hall Edge 2009 Shivakumar Jolad
J. K. Jain
+ PDF Chat Edge reconstructions in fractional quantum Hall systems 2003 Yogesh N. Joglekar
Hoang Ky Nguyen
Ganpathy Murthy
+ PDF Chat Low-energy spin rotons in the fractional quantum Hall effect 2001 Sudhansu S. Mandal
J. K. Jain
+ Theoretical search for unconventional fractional quantum Hall effect of composite fermions 2016 Ajit C. Balram
+ PDF Chat Composite fermion theory, edge currents and the fractional quantum Hall effect 1996 George Kirczenow
Brad Johnson
+ Microscopic theory of the edge states of paired quantum Hall effects 2006 Yue Yu
+ PDF Chat Fractional quantum Hall edge: Effect of nonlinear dispersion and edge roton 2010 Shivakumar Jolad
Diptiman Sen
J. K. Jain
+ Fractional quantum Hall edge polaritons 2023 Lucas Winter
Oded Zilberberg
+ PDF Chat Microscopic study of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mfrac><mml:mn>2</mml:mn><mml:mn>5</mml:mn></mml:mfrac></mml:math>fractional quantum Hall edge 2011 G. J. Sreejith
Shivakumar Jolad
Diptiman Sen
J. K. Jain
+ PDF Chat Edge reconstruction in fractional quantum Hall states 2017 Ron Sabo
Itamar Gurman
Amir Lafont Rosenblatt
F. Lafont
Daniel Banitt
Jin‐Hong Park
Moty Heiblum
Yuval Gefen
V. Umansky
D. Mahalu
+ PDF Chat Excitons in the fractional quantum Hall effect 2025 Naiyuan James Zhang
R. Nguyen
Navketan Batra
Xiaoxue Liu
Kenji Watanabe
Takashi Taniguchi
D. E. Feldman
J. I. A. Li
+ The composite fermion theory revisited: a microscopic derivation without Landau level projection 2022 Bo Yang
+ PDF Chat Theoretical investigation of edge reconstruction in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ν</mml:mi><mml:mo>=</mml:mo><mml:mfrac><mml:mn>5</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:mrow></mml:math>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>7</mml:mn><mml:mn>3</mml:mn></mml:mfrac></mml:math>fractional quantum Hall states 2014 Yuhe Zhang
Ying-Hai Wu
Jimmy A. Hutasoit
J. K. Jain
+ PDF Chat Fractional quantum Hall states in the low-Zeeman-energy limit 1994 Xiaofeng Wu
J. K. Jain
+ PDF Chat Composite fermion theory: A microscopic derivation without Landau level projection 2022 Bo Yang