Type: Article
Publication Date: 2005-01-01
Citations: 101
DOI: https://doi.org/10.1137/040603851
A new filter-trust-region algorithm for solving unconstrained nonlinear optimization problems is introduced. Based on the filter technique introduced by Fletcher and Leyffer, it extends an existing technique of Gould, Leyffer, and Toint [SIAM J. Optim., 15 (2004), pp. 17--38] for nonlinear equations and nonlinear least-squares to the fully general unconstrained optimization problem. The new algorithm is shown to be globally convergent to at least one second-order critical point, and numerical experiments indicate that it is very competitive with more classical trust-region algorithms.