Torus actions on a cohomology product of three odd spheres

Type: Article

Publication Date: 1975-01-01

Citations: 4

DOI: https://doi.org/10.1090/s0002-9947-1975-0377953-3

Abstract

The main purpose of this paper is to describe how a torus group may act on a space, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose rational cohomology ring is isomorphic to that of a product of three odd-dimensional spheres, in such a way that the fixed point set is nonempty, and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not totally nonhomologous to zero in the associated <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-bundle, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X Subscript upper T Baseline right-arrow upper B Subscript upper T"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>B</mml:mi> <mml:mi>T</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{X_T} \to {B_T}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In the first section of the paper some general results on the cohomology theory of torus actions are established. In the second section the cohomology theory of the above type of action is described; and in the third section the results of the first two sections are used to prove a Golber formula for such actions, which, under certain conditions, bears an interesting interpretation in terms of rational homotopy.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Torus Actions on a Cohomology Product of Three Odd Spheres 1975 Christopher Allday
+ Torus actions on a product of two odd spheres 1971 David Golber
+ PDF Chat On the rational homotopy Lie algebra of a fixed point set of a torus action 1986 Christopher Allday
Volker Puppe
+ PDF Chat Classification of homotopy torus knot spaces 1975 Richard S. Stevens
+ PDF Chat Triviality of simple fiber-preserving actions of tori on Hilbert-cube-fiber bundles 1983 Vo Thanh Liem
+ PDF Chat Torus bundles over lens spaces 2024 Oliver H. Wang
+ PDF Chat Finite loop space with maximal tori have finite Weyl groups 1993 Larry Smith
+ PDF Chat Cohomology ring of the orbit space of certain free 𝑍_{𝑝}-actions 1995 Ronald M. Dotzel
Tej Bahadur Singh
+ PDF Chat On the mapping torus of an automorphism 1983 William L. Paschke
+ PDF Chat Lifting involutions in a Weyl group to the torus normalizer 2018 G. Lusztig
+ On the torus cobordant cohomology spheres 2009 Ali Özkurt
Doğan Dönmez
+ PDF Chat Torus actions on cohomological complex projective spaces 1977 Kai Wang
+ PDF Chat Classification of circle actions on 4-manifolds 1978 Ronald Fintushel
+ Group actions on spheres with rank one isotropy 2015 Ian Hambleton
Ergün Yalçın
+ Lifting involutions in a Weyl group to the normalizer of the torus 2022 Moshe Adrian
+ PDF Chat 𝐺𝐿(2,𝑍) action on a two torus 1992 Kyewon Koh Park
+ The Kahn-Priddy Theorem and the homotopy of the three-sphere 2012 Piotr Beben
Stephen Theriault
+ PDF Chat Noncharacteristic embeddings of the 𝑛-dimensional torus in the (𝑛+2)-dimensional torus 1994 D. W. Miller
+ PDF Chat Norm one Tori and Hasse norm principle 2022 Akinari Hoshi
Kazuki Kanai
Aiichi Yamasaki
+ Times two, three, five orbits on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">T</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math> 2022 Han Yu