A spectral gap property for subgroups of finite covolume in Lie groups

Type: Article

Publication Date: 2010-01-01

Citations: 8

DOI: https://doi.org/10.4064/cm118-1-9

Abstract

Let G be a real Lie group and H a lattice or, more generally, a closed subgroup of finite covolume in G. We show that the unitary representation lambda_{G/H} of G on L^2(G/H) has a spectral gap, that is, the restriction of lambda_{G/H} to the orthogonal of the constants in L^2(G/H) does not have almost invariant vectors. This answers a question of G. Margulis. We give an application to the spectral geometry of locally symmetric Riemannian spaces of infinite volume.

Locations

  • Colloquium Mathematicum - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Volume invariant and maximal representations of discrete subgroups of Lie groups 2012 Sungwoon Kim
Инканг Ким
+ PDF Chat A spectral gap theorem in simple Lie groups 2015 Yves Benoist
Nicolas de Saxcé
+ Spectral theory for non-unitary twists 2019 Anton Deitmar
+ Spectral theory for non-unitary twists 2017 Anton Deitmar
+ Spectral theory for non-unitary twists 2017 Anton Deitmar
+ Lattices with and lattices without spectral gap 2009 Bachir Bekka
Alexander Lubotzky
+ Lattices with and lattices without spectral gap 2009 Bachir Bekka
Alexander Lubotzky
+ PDF Chat Lattices with and lattices without spectral gap 2011 Bachir Bekka
Alexander Lubotzky
+ PDF Chat Local spectral gap in simple Lie groups and applications 2016 Rémi Boutonnet
Adrian Ioana
Alireza Salehi Golsefidy
+ Spectrum of semisimple locally symmetric spaces and admissibility of spherical representations 2021 Salah Mehdi
Martin Olbrich
+ PDF Chat Spectrum of semisimple locally symmetric spaces and admissibility of spherical representations 2021 Salah Mehdi
Martin Olbrich
+ PDF Chat A note on subgroups of cofinite volume 2013 Martin Moskowitz
+ Geometric dimension of lattices in classical simple Lie groups 2015 Javier Aramayona
Dieter Degrijse
Conchita Martı́nez-Pérez
Juan Souto
+ Local spectral gap in simple Lie groups and applications 2015 Rémi Boutonnet
Adrian Ioana
Alireza Salehi Golsefidy
+ Infinite volume and atoms at the bottom of the spectrum 2024 S. F. Edwards
Mikołaj Frączyk
Minju Lee
Hee Oh
+ Local spectral gap in simple Lie groups and applications 2015 Rémi Boutonnet
Adrian Ioana
Alireza Salehi Golsefidy
+ Dimension rigidity of lattices in semisimple Lie groups 2016 Cyril Lacoste
+ Dimension rigidity of lattices in semisimple Lie groups 2016 Cyril Lacoste
+ Large scale geometry of Banach-Lie groups 2020 Hiroshi Ando
Michal Doucha
Yasumichi Matsuzawa
+ Large scale geometry of Banach-Lie groups 2022 Hiroshi Ando
Michal Doucha
Yasumichi Matsuzawa