A Simple Proof of Rankin's Campanological Theorem

Type: Article

Publication Date: 1999-02-01

Citations: 14

DOI: https://doi.org/10.1080/00029890.1999.12005023

Locations

  • American Mathematical Monthly - View

Similar Works

Action Title Year Authors
+ A Simple Proof of Rankin's Campanological Theorem 1999 Richard G. Swan
+ An Elementary Proof of Gilbreath’s Conjecture 2015 Hashem Sazegar
+ An Elementary Proof ofGilbreath’sConjecture 2015 Hashem Sazegar
+ An Elementary Proof ofGilbreath’sConjecture 2015 Hashem Sazegar
+ A simple proof of Lester’s theorem 2003 John Rigby
+ A bijection from a finite group to the cyclic group with a divisibility property on the element orders 2020 Mohsen Amiri
+ A computational approach to ConwayĘĽs thrackle conjecture 2011 Radoslav Fulek
János Pach
+ Cyclic and Linear 2013
+ A Combinatorial Proof of a generalization of a Theorem of Frobenius 2022 Supravat Sarkar
+ A proof of Blattner's conjecture 1976 Henryk Hecht
Wilfried Schmid
+ Epilogue 2023 John McCleary
+ A new look at the Feit-Thompson odd order theorem 1999 Geoge Glauberman
+ A proof of Coleman's conjecture 2006 Krzysztof Kołodziejczyk
Daria Olszewska
+ PDF Chat A Cyclic Inequality 1961 R. A. Rankin
+ Cyclic order: a geometric analysis 2020 Rolf Struve
+ PDF Chat None 1996 Peter J‎. Cameron
+ Proof of a conjecture of Wiegold 2019 Alexander Skutin
+ Combinatorial Properties, Invariants and Structures Associated with the Direct Product of Alternating and Cyclic Groups Acting on the Cartesian Product of Two Sets 2024 Morang’a Orina
Nyaga Namu
Gikunju Muriuki
+ A proof of Gray’s conjecture 1989 John R. Harper
+ When Any Group of N Elements is Cyclic? 2011 V. Bragin
Ant. A. Klyachko
A. Skopenkov