Remarks on classical invariant theory

Type: Article

Publication Date: 1989-01-01

Citations: 596

DOI: https://doi.org/10.1090/s0002-9947-1989-0986027-x

Abstract

A uniform formulation, applying to all classical groups simultaneously, of the First Fundamental Theory of Classical Invariant Theory is given in terms of the Weyl algebra. The formulation also allows skew-symmetric as well as symmetric variables. Examples illustrate the scope of this formulation.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Remarks on Classical Invariant Theory 1989 Roger Howe
+ PDF Chat On the Invariant Theory of the Classical Groups 1952 F. D. Murnaghan
+ Invariant operators for the classical groups 1977 V. S. Popov
+ Analogue of the classical invariant theory for Lie superalgebras 1992 A. N. Sergeev
+ Classical invariant theory 2012 Shun‐Jen Cheng
Weiqiang Wang
+ CLASSICAL INVARIANT THEORY 1996 Hanspeter Kraft
Claudio Procesi
+ Review: Hermann Weyl, The Classical Groups 1940 Nathan Jacobson
+ Skew-symmetric invariant theory 1976 Peter Doubilet
Gian‐Carlo Rota
+ PDF Chat Correction: Modular Structure of the Weyl Algebra 2023 Roberto Longo
+ New Constructions in Classical Invariant Theory 2010 PĂ©ter E. Frenkel
+ Supersymmetric Bracket Algebra and Invariant Theory 1990 Rosa Q. Huang
Gian‐Carlo Rota
Joël Stein
+ Supersymmetric bracket algebra and invariant theory 1990 Rosa Q. Huang
Gian‐Carlo Rota
Joël Stein
+ A generalization of the Weyl group 1983 J. Szenthe
+ Classical Invariant Theory 2009 Roe Goodman
Nolan R. Wallach
+ First Fundamental Theorem of Invariant Theory for covariants of classical groups 2000 D. A. Shmelkin
+ Classical and Geometric Invariant Theory for Products of Classical Groups 2017 Nolan R. Wallach
+ PDF Chat A Generalization of the Weyl Algebra 2015
+ Classical groups from a non-classical viewpoint 1979 William M. Kantor
+ PDF Chat Book Review: Representations and invariants of the classical groups 1999 Jacob Towber
+ PDF Chat Correction to “Classical groups and the Hasse principle” 2006 Eva Bayer‐Fluckiger
R. Parimala