Statistics of the critical percolation backbone with spatial long-range correlations

Type: Article

Publication Date: 2003-02-24

Citations: 18

DOI: https://doi.org/10.1103/physreve.67.027102

Abstract

We study the statistics of the backbone cluster between two sites separated by distance r in two-dimensional percolation networks subjected to spatial long-range correlations. We find that the distribution of backbone mass follows the scaling ansatz, P(M(B)) approximately M(-(alpha+1))(B)f(M(B)/M(0)), where f(x)=(alpha+etax(eta))exp(-x(eta)) is a cutoff function and M0 and eta are cutoff parameters. Our results from extensive computational simulations indicate that this scaling form is applicable to both correlated and uncorrelated cases. We show that the exponent alpha can be directly related to the fractal dimension of the backbone d(B), and should therefore depend on the imposed degree of long-range correlations.

Locations

  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Scaling for the critical percolation backbone 1999 Marc Barthélemy
Sergey V. Buldyrev
Shlomo Havlin
H. Eugene Stanley
+ Renormalization group calculation of distribution functions: Structural properties for percolation clusters 1997 J.-P. Hovi
Amnon Aharony
+ PDF Chat Dependence of conductance on percolation backbone mass 2000 Gerald Paul
Sergey V. Buldyrev
Nikolay V. Dokholyan
Shlomo Havlin
Peter R. King
Youngki Lee
H. Eugene Stanley
+ PDF Chat Probability distribution of the shortest path on the percolation cluster, its backbone, and skeleton 1998 Markus Porto
Shlomo Havlin
H. Eduardo Roman
Armin Bunde
+ Structural and dynamical properties of long-range correlated percolation 1992 Sona Prakash
Shlomo Havlin
Moshe Schwartz
H. Eugene Stanley
+ PDF Chat Percolation with long-range correlated disorder 2013 K. J. Schrenk
N. Posé
Julian Kranz
L. V. M. van Kessenich
N. A. M. Araújo
Hartmut Herrmann
+ Transport on the percolation backbone 1993 Ioannis Mastorakos
Panos Argyrakis
+ PDF Chat The critical two-point function for long-range percolation on the hierarchical lattice 2024 Tom Hutchcroft
+ PDF Chat Scaling laws for random walks in long-range correlated disordered media 2017 Fricke
Johannes Zierenberg
M. Marenz
F. Paul Spitzner
Viktoria Blavatska
Janke
+ PDF Chat Critical exponents of correlated percolation of sites not visited by a random walk 2024 Raz Halifa Levi
Yacov Kantor
+ PDF Chat Multifractal behavior of linear polymers in disordered media 2000 Anke Ordemann
Markus Porto
H. Eduardo Roman
Shlomo Havlin
Armin Bunde
+ PDF Chat Mass distribution on clusters at the percolation threshold 1995 Mark F. Gyure
M. Ferer
Boyd F. Edwards
Greg Huber
+ The critical two-point function for long-range percolation on the hierarchical lattice 2021 Tom Hutchcroft
+ Structural and dynamical properties of the percolation backbone in two and three dimensions 1997 Markus Porto
Armin Bunde
Shlomo Havlin
H. Eduardo Roman
+ Critical cluster volumes in hierarchical percolation 2022 Tom Hutchcroft
+ PDF Chat On the hulls of directed percolation clusters 1997 A L Owczarek
Andrew Rechnitzer
R Brak
A J Guttmann
+ Crossover from mean-field to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e1581" altimg="si43.gif"><mml:mn>2</mml:mn><mml:mi>d</mml:mi></mml:math> Directed Percolation in the contact process 2018 T. B. dos Santos
Cesar I. N. Sampaio Filho
N. A. M. Araújo
C. L. N. Oliveira
André A. Moreira
+ Scaling of Cluster and Backbone Mass Between Two Lines in 3d Percolation 2001 L. R. da Silva
Gerald Paul
Shlomo Havlin
Don R. Baker
H. Eugene Stanley
+ Cluster-size decay in supercritical long-range percolation 2023 Joost Jorritsma
Júlia Komjáthy
Dieter Mitsche
+ PDF Chat Universality classes for percolation models with long-range correlations 2024 Christopher Chalhoub
Alexander Drewitz
Alexis Prévost
Pierre‐François Rodriguez