The first eigenvalue problem and tensor products of zeta functions

Type: Article

Publication Date: 2004-05-01

Citations: 6

DOI: https://doi.org/10.3792/pjaa.80.35

Abstract

We obtain a new bound for the first eigenvalue of the Laplacian for Bianchi manifolds by the method of Luo, Rudnick and Sarnak. We use a recent result of Kim on symmetric power $L$-functions. The key idea is to take tensor products of zeta functions, and we report on our recent developments on Kurokawa's multiple zeta functions.

Locations

  • Proceedings of the Japan Academy Series A Mathematical Sciences - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Absolute tensor products, Kummer's formula and functional equations for multiple Hurwitz zeta functions 2006 Hirotaka Akatsuka
+ Symmetric Schur multiple zeta functions 2022 Maki Nakasuji
Wataru Takeda
+ Eigenvalue problems and the Riemann zeta-function 1982 Ian Knowles
+ Reciprocal eigenvalue properties using the zeta and Möbius functions 2024 Ganesh S. Kadu
Gahininath Sonawane
Y. M. Borse
+ PDF Chat Multiple zeta values and the WKB method 2013 Michał Zakrzewski
Henryk Żołądek
+ A Simple Observation on Decomposition of Multiple Zeta Values 2020 N. Tamang
+ Eigenvalue problems and the Riemann zeta function II 1983 Ian Knowles
+ Multiple Zeta Functions 2016
+ PDF Chat Multitangent functions and symmetric multiple zeta values 2024 Minoru Hirose
+ Functional relations for various multiple zeta-functions 2006 耕二 松本
博文 津村
Kohji Matsumoto
Hirofumi Tsumura
+ The tangent symmetry of the multiple zeta-function 2023 Yoshitaka Sasaki
+ Introduction to the Theory of Multiple Zeta Values 2013
+ PDF Chat On functions of Arakawa and Kaneko and multiple zeta values 2010 Markus Kuba
+ Translation formula for multiple zeta functions and its applications 2025 Dilip K. Sahoo
+ PDF Chat Zeta functions and normalized multiple sine functions 2005 Shin-ya Koyama
Nobushige Kurokawa
+ Relations for multiple zeta values 2008 S. A. Zlobin
+ PDF Chat $${\mathbb {Q}}$$-linear relations of specific families of multiple zeta values and the linear part of Kawashima’s relation 2020 Minoru Hirose
Hideki Murahara
Tomokazu Onozuka
+ $\mathbb{Q}$-linear relations of specific families of multiple zeta values and the linear part of Kawashima's relation 2019 Minoru Hirose
Hideki Murahara
Tomokazu Onozuka
+ A new integral-series identity of multiple zeta values and regularizations 2016 Masanobu Kaneko
Shûji Yamamoto
+ PDF Chat A new integral–series identity of multiple zeta values and regularizations 2018 Masanobu Kaneko
Shûji Yamamoto