Estimates for character sums

Type: Article

Publication Date: 1993-01-01

Citations: 65

DOI: https://doi.org/10.1090/s0002-9939-1993-1152276-x

Abstract

We give a number of estimates for character sums <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation Underscript a element-of script upper A Endscripts sigma-summation Underscript b element-of script upper B Endscripts chi left-parenthesis a plus b right-parenthesis"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>a</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> </mml:mrow> </mml:munder> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:munder> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>b</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">B</mml:mi> </mml:mrow> </mml:mrow> </mml:munder> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>χ<!-- χ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>+</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum \limits _{a \in \mathcal {A}} {\sum \limits _{b \in \mathcal {B}} {\chi (a + b)} }</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> for rather general sets <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A comma script upper B"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace width="thickmathspace" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">B</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {A},\;\mathcal {B}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These give, in particular, a modified proof of the inequalities of Pólya-Vinogradov and of Burgess, which displays the latter as a generalization of the former.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat High order moments of character sums 1998 Todd Cochrane
Zhiyong Zheng
+ Explicit estimates for the sum ∑_{𝑘=0}ⁿ𝑘!𝑛\choose𝑘²(-1)^{𝑘} 2024 Anne-Maria Ernvall-Hytönen
Tapani Matala-aho
+ PDF Chat Note on Brewer’s character sum 1978 Kenneth S. Williams
+ PDF Chat An upper bound for the sum ∑^{𝑎+𝐻}_{𝑛=𝑎+1}𝑓(𝑛) for a certain class of functions 𝑓 1992 Edward Dobrowolski
Kenneth S. Williams
+ PDF Chat On certain character sums over 𝔽_{𝕢}[𝕋] 1998 Chih-Nung Hsu
+ PDF Chat Note on the Kloosterman sum 1971 Kenneth S. Williams
+ Character sums over shifted smooth numbers 2007 Igor E. Shparlinski
+ PDF Chat On values of exponential sums 1975 Chungming An
+ PDF Chat The nonvanishing of certain character sums 1974 Stephen V. Ullom
+ PDF Chat Inequalities for max|𝑆_{𝑘}|/𝑏_{𝑘} where 𝑘∈𝑁^{𝑟} 1976 Galen R. Shorack
R. T. Smythe
+ PDF Chat The distribution of Rademacher sums 1990 Stephen Montgomery-Smith
+ PDF Chat On sequences with a prescribed number of pairwise sums 1975 S. L. G. Choi
+ On the estimation and applications of character sums 1983 Yuan Wang
+ Closed form summation of 𝐶-finite sequences 2006 Curtis Greene
Herbert S. Wilf
+ On the equation <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>n</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:msub><mml:mi>n</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>=</mml:mo><mml:msub><mml:mi>n</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>n</mml:mi><mml:mn>4</mml:mn></mml:msub></mml:math> and mean value of character sums 2007 Sanying Shi
+ Character Tables from Class Sums 2022 Robert Kolenkow
+ Exponential sums with multiplicative coefficients 1999 Gennady Bachman
+ Character Tables 2016 Peter Webb
+ PDF Chat On (𝐿^{𝑝𝑜}(𝐴ₒ),𝐿^{𝑝₁}(𝐴₁))_{𝜃},_{𝑞} 1974 Michael Ćwikel
+ PDF Chat SHORT CHARACTER SUMS AND THEIR APPLICATIONS 2023 Forrest J. Francis