Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems

Type: Article

Publication Date: 1985-01-01

Citations: 21

DOI: https://doi.org/10.1090/s0025-5718-1985-0777269-7

Abstract

New convenient stability criteria are provided in this paper for a large class of finite-difference approximations to initial-boundary value problems associated with the hyperbolic system <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="bold u Subscript t Baseline equals upper A bold u Subscript x Baseline plus upper B bold u plus bold f"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">u</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">u</mml:mi> </mml:mrow> </mml:mrow> <mml:mi>x</mml:mi> </mml:msub> </mml:mrow> <mml:mo>+</mml:mo> <mml:mi>B</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">u</mml:mi> </mml:mrow> </mml:mrow> <mml:mo>+</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">f</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{{\mathbf {u}}_t} = A{{\mathbf {u}}_x} + B{\mathbf {u}} + {\mathbf {f}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the quarter plane <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x greater-than-or-slanted-equals 0"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">x \geqslant 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t greater-than-or-slanted-equals 0"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">t \geqslant 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using the new criteria, stability is easily established for numerous combinations of well-known basic schemes and boundary conditions, thus generalizing many special cases studied in the recent literature.

Locations

  • Mathematics of Computation - View - PDF
  • Digital Repository at the University of Maryland (University of Maryland College Park) - View - PDF
  • NASA STI Repository (National Aeronautics and Space Administration) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. II 1981 Moshe Goldberg
Eitan Tadmor
+ PDF Chat Scheme-independent stability criteria for difference approximations of hyperbolic initial-boundary value problems. I 1978 Moshe Goldberg
Eitan Tadmor
+ Simple Stability Criteria for Difference Approximations of Hyperbolic Initial-Boundary Value Problems 1989 Moshe Goldberg
Eitan Tadmor
+ PDF Chat Convenient Stability Criteria for Difference Approximations of Hyperbolic Initial-Boundary Value Problems. II 1987 Moshe Goldberg
Eitan Tadmor
+ PDF Chat Convenient stability criteria for difference approximations of hyperbolic initial-boundary value problems. II 1987 Moshe Goldberg
Eitan Tadmor
+ PDF Chat Hybrid difference methods for the initial boundary-value problem for hyperbolic equations 1976 Joseph Oliger
+ PDF Chat A necessary condition for the stability of a difference approximation to a hyperbolic system of partial differential equations 1978 Anne M. Burns
+ PDF Chat Stability of parabolic difference approximations to certain mixed initial boundary value problems 1972 Stanley Osher
+ PDF Chat Differentiability of solutions to hyperbolic initial-boundary value problems 1974 Jeffrey Rauch
Frank J. Massey
+ PDF Chat Stable approximations for hyperbolic systems with moving internal boundary conditions 1974 Moshe Goldberg
Saul Abarbanel
+ PDF Chat Stability of a Second Order of Accuracy Difference Scheme for Hyperbolic Equation in a Hilbert Space 2007 Allaberen Ashyralyev
Mehmet Emir Köksal
+ PDF Chat Stability of difference approximations of dissipative type for mixed initial-boundary value problems. I 1969 Stanley Osher
+ PDF Chat Fourth order difference methods for the initial boundary-value problem for hyperbolic equations 1974 Joseph Oliger
+ Stability Analysis of Finite Difference Schemes for Hyperbolic Systems and Problems in Applied and Computational Linear Algebra 1988 Moshe Goldberg
Marvin Marcus
+ SOME INSIGHTS INTO THE STABILITY OF DIFFERENCE APPROXIMATIONS FOR HYPERBOLIC INITIAL-BOUNDARY-VALUE PROBLEMS 1986 R. F. Warming
Richard M. Beam
+ Stability of Difference Schemes 2012 Peter D. Lax
+ PDF Chat Convenient Stability Criteria for Difference Approximations of Hyperbolic Initial-Boundary Value Problems 1985 Moshe Goldberg
Eitan Tadmor
+ PDF Chat Stability of finite difference schemes for hyperbolic initial boundary value problems II 2011 Jean-François Coulombel
+ PDF Chat Convergence theorem for difference approximations of hyperbolic quasilinear initial-boundary value problems 1987 Daniel Michelson
+ PDF Chat An oscillation theorem for characteristic initial value problems for nonlinear hyperbolic equations 1979 Norio Yoshida