Type: Article
Publication Date: 2001-12-01
Citations: 144
DOI: https://doi.org/10.1007/pl00005588
We show that wave maps from Minkowski space ℝ1+ n to a sphere S m −1 are globally smooth if the initial data is smooth and has small norm in the critical Sobolev space , in all dimensions n≥ 5. This generalizes the results in the prequel [40] of this paper, which addressed the high-dimensional case n≥ 5. In particular, in two dimensions we have global regularity whenever the energy is small, and global regularity for large data is thus reduced to demonstrating non-concentration of energy.