Renormalization-group study of Anderson and Kondo impurities in gapless Fermi systems

Type: Article

Publication Date: 1998-06-01

Citations: 215

DOI: https://doi.org/10.1103/physrevb.57.14254

Abstract

Thermodynamic properties are presented for four magnetic impurity models describing the scattering of fermions from a localized orbital at an energy-dependent rate $\ensuremath{\Gamma}(\ensuremath{\epsilon})$ which vanishes precisely at the Fermi level, $\ensuremath{\epsilon}=0$. Specifically, it is assumed that for small $|\ensuremath{\epsilon}|$, $\ensuremath{\Gamma}(\ensuremath{\epsilon})\ensuremath{\propto}|\ensuremath{\epsilon}{|}^{r}$ with $r>0$. The cases $r=1$ and $r=2$ describe dilute magnetic impurities in unconventional $(d$- and $p$-wave) superconductors, ``flux phases'' of the two-dimensional electron gas, and certain zero-gap semiconductors. For the nondegenerate Anderson model, the main effects of the depression of the low-energy scattering rate are the suppression of mixed valence in favor of local-moment behavior and a marked reduction in the exchange coupling on entry to the local-moment regime, with a consequent narrowing of the range of parameters within which the impurity spin becomes Kondo screened. The precise relationship between the Anderson model and the exactly screened Kondo model with power-law exchange is examined. The intermediate-coupling fixed point identified in the latter model by Withoff and Fradkin (WF) is shown to have clear signatures both in the thermodynamic properties and in the local magnetic response of the impurity. The underscreened, impurity-spin-1 Kondo model and the overscreened, two-channel Kondo model both exhibit a conditionally stable intermediate-coupling fixed point in addition to unstable fixed points of the WF type. In all four models, the presence or absence of particle-hole symmetry plays a crucial role in determining the physics both at strong coupling and in the vicinity of the WF transition. These results are obtained using an extension of Wilson's numerical renormalization-group technique to treat energy-dependent scattering. The strong- and weak-coupling fixed points of each model are identified and their stability is analyzed. Algebraic expressions are derived for the fixed-point thermodynamic properties and for low-temperature corrections about the stable fixed points. Numerical data are presented confirming the algebraic results, identifying and characterizing intermediate-coupling (non-Fermi-liquid) fixed points, and exploring temperature-driven crossovers between different physical regimes.

Locations

  • Physical review. B, Condensed matter - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Spectral properties of a two-orbital Anderson impurity model across a non-Fermi-liquid fixed point 2004 Lorenzo De Leo
Michele Fabrizio
+ PDF Chat Phase transitions in the pseudogap Anderson and Kondo models: Critical dimensions, renormalization group, and local-moment criticality 2004 Lars Fritz
Matthias Vojta
+ PDF Chat Validity of the equation-of-motion approach to the Kondo problem in the large-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math>limit 2009 Yunong Qi
Jian‐Xin Zhu
C. S. Ting
+ PDF Chat Two-channel pseudogap Kondo and Anderson models: Quantum phase transitions and non-Fermi liquids 2011 Imke Schneider
Lars Fritz
Frithjof B. Anders
Adel Benlagra
Matthias Vojta
+ PDF Chat Critical charge fluctuations in a pseudogap Anderson model 2015 Tathagata Chowdhury
Kevin Ingersent
+ PDF Chat A local moment approach to magnetic impurities in gapless Fermi systems 2000 David E. Logan
Matthew T. Glossop
+ PDF Chat Identifying an effective model for the two-stage-Kondo regime: Numerical renormalization group results 2024 P. A. Almeida
E. Vernek
E. V. Anda
S. E. Ulloa
G. B. Martins
+ Numerical renormalization group method for quantum impurity systems 2008 R. Bulla
T. A. Costi
Thomas Pruschke
+ PDF Chat Fully compensated Kondo effect for a two-channel spin <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>S</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> impurity 2019 G. G. Blesio
L. O. Manuel
A. A. Aligia
P. Roura-Bas
+ Non-Fermi-liquid fixed point in multi-orbital Kondo impurity model relevant for Hund's metals 2019 Alen Horvat
Rok Žitko
Jernej Mravlje
+ Non-Fermi-liquid fixed point in multi-orbital Kondo impurity model relevant for Hund's metals 2019 Alen Horvat
Rok Žitko
Jernej Mravlje
+ PDF Chat Quantum phase transitions and thermodynamics of the power-law Kondo model 2013 Andrew K. Mitchell
Matthias Vojta
R. Bulla
Lars Fritz
+ PDF Chat Critical properties of the Fermi-Bose Kondo and pseudogap Kondo models: Renormalized perturbation theory 2004 Marijana Kirćan
Matthias Vojta
+ Spectral properties of strongly correlated multi impurity models in the Kondo insulator regime: Emergent coherence, metallic surface states and quantum phase transitions 2021 Fabian Eickhoff
Frithjof B. Anders
+ PDF Chat Quantum phase transitions in a charge-coupled Bose-Fermi Anderson model 2009 Mengxing Cheng
Matthew T. Glossop
Kevin Ingersent
+ PDF Chat Kondo effect of impurity moments in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>d</mml:mi></mml:math>-wave superconductors: Quantum phase transition and spectral properties 2001 Matthias Vojta
R. Bulla
+ One-, two-, and three-channel Kondo effects for a model<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">Ce</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn><mml:mo>+</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:math>impurity in a metal 1997 Tae‐Suk Kim
D. L. Cox
+ PDF Chat Fine structure of spectra in the antiferromagnetic phase of the Kondo lattice model 2015 Žiga Osolin
Thomas Pruschke
Rok Žitko
+ PDF Chat Natural orbitals renormalization group approach to the two-impurity Kondo critical point 2015 Rong-Qiang He
Jianhui Dai
Zhong-Yi Lu
+ PDF Chat Spectral properties of strongly correlated multi-impurity models in the Kondo insulator regime: Emergent coherence, metallic surface states, and quantum phase transitions 2021 Fabian Eickhoff
Frithjof B. Anders

Works That Cite This (185)

Action Title Year Authors
+ PDF Chat Influence of Rashba spin-orbit coupling on the Kondo effect 2016 Arturo Wong
Sergio E. Ulloa
Nancy Sandler
Kevin Ingersent
+ PDF Chat Quasiparticle interference from magnetic impurities 2015 Philip Derry
Andrew K. Mitchell
David E. Logan
+ PDF Chat Critical local moment fluctuations and enhanced pairing correlations in a cluster Anderson model 2020 Ang Cai
J. H. Pixley
Kevin Ingersent
Qimiao Si
+ PDF Chat Tunable unconventional Kondo effect on topological insulator surfaces 2015 Леонид Исаев
Gerardo Ortíz
Ilya Vekhter
+ PDF Chat Conductance and Kondo Interference beyond Proportional Coupling 2017 Luis G. G. V. Dias da Silva
Caio Lewenkopf
E. Vernek
Gerson J. Ferreira
Sergio E. Ulloa
+ PDF Chat Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study 2017 Mengxing Cheng
Tathagata Chowdhury
Aaron Mohammed
Kevin Ingersent
+ PDF Chat Sublattice symmetry breaking and Kondo-effect enhancement in strained graphene 2019 Dawei Zhai
Kevin Ingersent
Sergio E. Ulloa
Nancy Sandler
+ PDF Chat Scaling theory of intrinsic Kondo and Hund's rule interactions in magic-angle twisted bilayer graphene 2023 Yang-Zhi Chou
S. Das Sarma
+ PDF Chat Entanglement entropy near Kondo-destruction quantum critical points 2015 J. H. Pixley
Tathagata Chowdhury
Matthew Miecnikowski
Jaimie Stephens
Christopher Wagner
Kevin Ingersent
+ PDF Chat Transport signatures of Kondo physics and quantum criticality in graphene with magnetic impurities 2017 David A. Ruiz‐Tijerina
Luis G. G. V. Dias da Silva

Works Cited by This (11)

Action Title Year Authors
+ PDF Chat Comment on “Nonzero Fermi Level Density of States for a Disordered<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">d</mml:mi></mml:math>-Wave Superconductor in Two Dimensions” 1997 A. A. Nersesyan
A. M. Tsvelik
+ On Magnetic Impurities in Gapless Fermi Systems 1997 L. S. Borkowski
+ PDF Chat Disorder effects in two-dimensional<i>d</i>-wave superconductors 1994 A. A. Nersesyan
A. M. Tsvelik
F. Wenger
+ PDF Chat Behavior of magnetic impurities in gapless Fermi systems 1996 Kevin Ingersent
+ PDF Chat Static parametric fluctuations give nonstatistical behavior in uncoupled chaotic systems 1994 Gabriel Pérez
Hilda A. Cerdeira
+ PDF Chat Nonzero Fermi Level Density of States for a Disordered<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="italic">d</mml:mi></mml:math>-Wave Superconductor in Two Dimensions 1996 K. Ziegler
Matthias H. Hettler
P. J. Hirschfeld
+ PDF Chat Overscreening of magnetic impurities in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow><mml:mi>−</mml:mi><mml:mrow><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>-wave … 1997 Carlos R. Cassanello
Eduardo Fradkin
+ An iteration method for the solution of the eigenvalue problem of linear differential and integral operators 1950 Cornelius Lanczos
+ PDF Chat One-dimensional Fermi liquids 1995 Johannes Voit
+ PDF Chat Low-temperature properties of anisotropic superconductors with kondo impurities 1994 L. S. Borkowski
P. J. Hirschfeld