Prime ideals in enveloping rings

Type: Article

Publication Date: 1987-01-01

Citations: 23

DOI: https://doi.org/10.1090/s0002-9947-1987-0891634-7

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a Lie algebra over the field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of characteristic <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0"> <mml:semantics> <mml:mn>0</mml:mn> <mml:annotation encoding="application/x-tex">0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote its universal enveloping algebra. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as derivations, then there is a natural ring generated by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which is denoted by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R number-sign upper U left-parenthesis upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mi mathvariant="normal">#<!-- # --></mml:mi> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">R\# U(L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and called the smash product of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The aim of this paper is to describe the prime ideals of this algebra when it is Noetherian. Specifically we show that there exists a twisted enveloping algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts and a precisely defined one-to-one correspondence between the primes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R number-sign upper U left-parenthesis upper L right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>R</mml:mi> <mml:mi mathvariant="normal">#<!-- # --></mml:mi> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>L</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">R\#U(L)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P intersection upper R equals 0"> <mml:semantics> <mml:mrow> <mml:mi>P</mml:mi> <mml:mo>∩<!-- ∩ --></mml:mo> <mml:mi>R</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">P \cap R = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding="application/x-tex">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable primes of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis upper X right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>X</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(X)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper X"> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding="application/x-tex">X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a Lie algebra over some field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C superset-of-or-equal-to upper K"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo>⊇<!-- ⊇ --></mml:mo> <mml:mi>K</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">C \supseteq K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Prime ideals in C*-algebras and applications to Lie theory 2024 Eusebio Gardella
Hannes Thiel
+ PDF Chat Ideals and centralizing mappings in prime rings 1982 Joseph H. Mayne
+ PDF Chat Lie and Jordan ideals in prime rings with derivations 1976 Mansoor Ahmad
+ PDF Chat Chain of prime ideals in formal power series rings 1983 Ada Maria de Souza Doering
Yves Lequain
+ PDF Chat On nilpotent derivations of prime rings 1989 Chen-Lian Chuang
+ PDF Chat Prime ideals in differential operator rings. Catenarity 1990 Ken A. Brown
K. R. Goodearl
T. H. Lenagan
+ On supports and associated primes of modules over the enveloping algebras of nilpotent Lie algebras 2001 Boris Širola
+ PDF Chat Prime rings with involution whose symmetric zero-divisors are nilpotent 1973 P. M. Cohn
+ PDF Chat Prime ideals in two-dimensional polynomial rings 1989 William Heinzer
Sylvia Wiegand
+ PDF Chat Free subalgebras of enveloping fields 1991 Leonid Makar-Limanov
Peter Malcolmson
+ PDF Chat Lie ideals and Jordan derivations of prime rings 1984 Ram Awtar
+ PDF Chat Coefficient ideals 1991 Kishor Shah
+ PDF Chat Indecomposability of ideals in group rings 1984 M. M. Parmenter
+ PDF Chat Derivations in prime rings 1982 B. Felzenszwalb
+ PDF Chat Rings of invariant polynomials for a class of Lie algebras 1971 S. J. Takiff
+ PDF Chat 𝐼-rings 1975 W. K. Nicholson
+ PDF Chat Ideals in the modular group ring of a 𝑝-group 1971 E. T. Hill
+ PDF Chat Prime ideals in polynomial rings over one-dimensional domains 1995 William Heinzer
Sylvia Wiegand
+ PDF Chat Maximal ideals in Laurent polynomial rings 1992 Budh Nashier
+ PDF Chat Prime ideals in polycyclic crossed products 1987 D. S. Passman