Variation norm convergence of function sequences

Type: Article

Publication Date: 1974-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9939-1974-0352808-3

Abstract

We prove that a pointwise convergent sequence of convex functions with a continuous limit converges with respect to the total variation norm. This yields a theorem on convexity-preserving operators which has as a corollary the result that a complex function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is absolutely continuous on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket 0 comma 1 right-bracket"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">]</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">[0,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if the sequence <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B period left-parenthesis f right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>.</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">B.(f)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of Bernstein polynomials of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> converges to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to the total variation norm.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Continuous functions with everywhere infinite variation with respect to sequences 1988 Zoltán Buczolich
+ PDF Chat A pointwise convergence theorem for sequences of continuous functions. 1971 Keith Schrader
+ PDF Chat A relation between pointwise convergence of functions and convergence of functionals 1983 Haı̈m Brezis
Élliott H. Lieb
+ PDF Chat On weak convergence in 𝐻¹(𝑅^{𝑑}) 1994 Peter W. Jones
Jean-Lin Journé
+ PDF Chat Differentiability of convex functions and Rybakov’s theorem 1982 Russell G. Bilyeu
Paul Lewis
+ On the pointwise maximum of convex functions 2000 Simon Fitzpatrick
Stephen Simons
+ PDF Chat Limits of differentiable functions 1996 Udayan B. Darji
+ PDF Chat On sequences without weak* convergent convex block subsequences 1987 Richard Haydon
Mireille Levy
Edward Odell
+ PDF Chat Pointwise in terms of weak convergence 1974 J. R. Baxter
+ PDF Chat Almost everywhere convergence for sequences of continuous functions 1975 Keith Schrader
S. Umamaheswaram
+ PDF Chat The growth theorem of convex mappings on the unit ball in ℂⁿ 1999 Hidetaka Hamada
+ PDF Chat Convex functions and Fourier coefficients 1985 Hann Tzong Wang
+ Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps 2003 C.E. Chidume
Habtu Zegeye
+ Spaces on which every pointwise convergent series of continuous functions converges pseudo-normally 2004 Lev Bukovský
Krzysztof Ciesielski
+ PDF Chat On weak* convergence in 𝐻¹ 1996 Joseph A. Cima
Alec Matheson
+ Complex strict convexity of absolute norms on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi mathvariant="double-struck">C</mml:mi><mml:mi>n</mml:mi></mml:msup></mml:math> and direct sums of Banach spaces 2005 Patrick N. Dowling
B. Turett
+ PDF Chat A very slowly convergent sequence of continuous functions 1973 Walter Rudin
+ PDF Chat Convexity of vector-valued functions 1974 Ih Ching Hsu
Robert G. Kuller
+ PDF Chat More on the differentiability of convex functions 1988 Maria Elena Verona
+ Extremal points of a functional on the set of convex functions 1999 Thomas Lachand-Robert
Mark A. Peletier

Works That Cite This (0)

Action Title Year Authors