A note on tamely ramified polynomials

Type: Article

Publication Date: 1980-02-01

Citations: 27

DOI: https://doi.org/10.2140/pjm.1980.86.421

Abstract

Let fix) be a monic polynomial with coefficients in a Dedekind ring A. If P is a prime ideal and A P denotes the completion of A at P then f{%) is said to be integrally closed at P if A P [X]/(f(X)) is isomorphic to a product of discrete valuation rings.

Locations

  • Pacific Journal of Mathematics - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A note on tamely ramified extensions of rings 1983 Martin L. Brown
+ On the Integral Closure of Polynomial Rings over a Valuation Domain 1998 Hagen Knaf
+ PDF Chat The ring of polynomials integral-valued over a finite set of integral elements 2016 Giulio Peruginelli
+ Some Examples of Locally Divided Rings 2019 Ayman Badawı
David E. Dobbs
+ ON A THEOREM OF DEDEKIND 2008 Sudesh K. Khanduja
Munish Kumar
+ Ramification in some non-galois extension of function fields 2009 Özgür Deniz Polat
+ On the Integral Closedness of $R[\alpha]$ 2018 Abdulaziz Deajim
Lhoussain El Fadil
+ On the Integral Closedness of $R[α]$ 2018 Abdulaziz Deajim
Lhoussain El Fadil
+ On a Theorem of Dedekind 2021 Abdulaziz Deajim
Lhoussain El Fadil
Ahmed Najim
+ On a Theorem of Dedekind 2021 Abdulaziz Deajim
Lhoussain El Fadil
Ahmed Najim
+ PDF Chat Note on the ring of integers of a Kummer extension of prime degree. II 2001 Humio Ichimura
+ Tamely ramified extensions's structure. 2001 Denis Ibadula
+ Completely integrally closed Prufer $v$-multiplication domains 2017 D. D. Anderson
David F. Anderson
Muhammad Zafrullah
+ Polynomial Rings 1978 Harvey Cohn
+ Integral Closure of Rings with Zero Divisors 1993 Byung Gyun Kang
+ PDF Chat Integral extensions of a ring 1949 Harold Chatland
Henry B. Mann
+ Closed polynomials in polynomial rings over integral domains 2015 Hideo Kojima
Takanori Nagamine
+ Revisiting G-Dedekind domains 2021 Muhammad Zafrullah
+ Revisiting G-Dedekind domains 2021 Muhammad Zafrullah
+ PDF Chat When $(D[[X]])\sb{P[[X]]}$ is a valuation ring 1973 Jimmy T. Arnold
J. W. Brewer