Spectral concentration and virtual poles. II

Type: Article

Publication Date: 1971-01-01

Citations: 35

DOI: https://doi.org/10.1090/s0002-9947-1971-0283618-5

Abstract

Spectral concentration at an isolated eigenvalue of finite multiplicity of the selfadjoint operator ${H_\varepsilon } = {T_\varepsilon } + {A_\varepsilon }{B_\varepsilon }$ is shown to arise from a pole of an analytic continuation of ${A_\varepsilon }{({H_\varepsilon } - z)^{ - 1}}{B_\varepsilon }$. An application to quantum mechanical barrier penetration is given.

Locations

  • Transactions of the American Mathematical Society - View

Similar Works

Action Title Year Authors
+ PDF Chat Spectral Concentration and Virtual Poles. II 1971 James S. Howland
+ PDF Chat Embedded eigenvalues and virtual poles 1969 James S. Howland
+ PDF Chat Perturbative analysis of spectral singularities and their optical realizations 2012 AlĂ­ Mostafazadeh
Saber Rostamzadeh
+ PDF Chat Spectral Singularities of Complex Scattering Potentials and Infinite Reflection and Transmission Coefficients at Real Energies 2009 AlĂ­ Mostafazadeh
+ PDF Chat Spectral singularities, biorthonormal systems and a two-parameter family of complex point interactions 2009 AlĂ­ Mostafazadeh
Hossein Mehri‐Dehnavi
+ PDF Chat Spectral singularities of a complex spherical barrier potential and their optical realization 2011 AlĂ­ Mostafazadeh
Mustafa Sarısaman
+ A note on spectral concentration for non-isolated eigenvalues 1991 James S. Howland
+ A universal form of localized complex potentials with spectral singularities 2020 Dmitry A. Zezyulin
V. V. Konotop
+ PDF Chat Minimal pole representation and analytic continuation of matrix-valued correlation functions 2024 L. Zhang
Yang Yu
Emanuel Gull
+ PDF Chat On beautiful analytic structure of the S-matrix 2019 Alexander Moroz
Andrey E. Miroshnichenko
+ Sharp bound for embedded eigenvalues of Dirac operators with decaying potentials 2023 Vishwam Khapre
Kang Lyu
Andrew Yu
+ Virtual Eigenvalues of the High Order Schrödinger Operator II 2005 Jonathan Arazy
Leonid Zelenko
+ Complex eigenvalues 2004 James C. Robinson
+ Anharmonic oscillators in the complex plane, $\mathcal{PT}$-symmetry, and real eigenvalues 2010 Kwang C. Shin
+ Anharmonic oscillators in the complex plane, $\mathcal{PT}$-symmetry, and real eigenvalues 2010 Kwang C. Shin
+ Approximating resonances with the Complex Absorbing Potential Method 2004 Plamen Stefanov
+ PDF Chat Approximating Resonances with the Complex Absorbing Potential Method 2005 Plamen Stefanov
+ Resonances near spectral thresholds for multichannel discrete Schrödinger operators 2022 Marouane Assal
Olivier Bourget
Pablo Miranda
Diomba Sambou
+ Spectral perturbation. Case of isolated eigenvalues 2008
+ Schrödinger type eigenvalue problems with polynomial potentials: Asymptotics of eigenvalues 2004 Kwang C. Shin