Gauge field theory coherent states (GCS): II. Peakedness properties

Type: Article

Publication Date: 2001-06-29

Citations: 179

DOI: https://doi.org/10.1088/0264-9381/18/14/301

Abstract

In this paper we apply the methods outlined in the previous paper of this series to the particular set of states obtained by choosing the complexifier to be a Laplace operator for each edge of a graph. The corresponding coherent state transform was introduced by Hall for one edge and generalized by Ashtekar, Lewandowski, Marolf, Mourão and Thiemann to arbitrary, finite, piecewise-analytic graphs.

Locations

  • Classical and Quantum Gravity - View
  • arXiv (Cornell University) - View - PDF
  • MPG.PuRe (Max Planck Society) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Gauge field theory coherent states (GCS): III. Ehrenfest theorems 2001 Thomas Thiemann
Oliver Winkler
+ PDF Chat Gauge-invariant coherent states for loop quantum gravity: I. Abelian gauge groups 2009 Benjamin Bähr
Thomas Thiemann
+ Twisted geometry coherent states in all dimensional loop quantum gravity: II. Ehrenfest Property 2022 Gaoping Long
+ PDF Chat Twisted geometry coherent states in all dimensional loop quantum gravity. II. Ehrenfest property 2022 Gaoping Long
+ Coherent states and theta functions 1973 A. M. Perelomov
+ Generalized hypergeometric coherent states for special functions: mathematical and physical properties 2023 Isiaka Aremua
Messan Médard Akouetegan
Komi Sodoga
Mahouton Norbert Hounkonnou
Yaogan Mensah
+ Mathematical physics and complex analysis : collection of survey papers 4 [i.e. [4th]] on the 50th anniversary of the Institute 1988 Lyudvig Dmitrievich Faddeev
+ Generalized hypergeometric coherent states for special functions: Mathematical and physical properties 2025 Messan Médard Akouetegan
Isiaka Aremua
Komi Sodoga
Mahouton Norbert Hounkonnou
Yaogan Mensah
+ PDF Chat Discrete complex analysis – the medial graph approach 2014 Alexander I. Bobenko
Felix Günther
+ Complex Basis For Spectral Analysis of Graph Signals 2020 Rigobert Fokam
Laurent Bitjoka
Hypolyte Egole
+ Graph Laplacians and Fourier Transforms on Boolean Domains 2002 Tasuku Soma
V. A. Ustimenko
+ Graph Signal Processing -- Part II: Processing and Analyzing Signals on Graphs 2019 Ljubiša Stanković
Danilo P. Mandic
Miloš Daković
Miloš Brajović
Bruno Scalzo
A.G. Constantinides
+ Coherent states, wavelets and beyond 2000 Jean-Pierre Antoine
+ PDF Chat Hilbert Transform on Graphs: Let There Be Phase 2024 Chun Hei Michael Chan
Alexandre Cionca
Dimitri Van De Ville
+ PDF Chat Verifying the Smoothness of Graph Signals: A Graph Signal Processing Approach 2024 Lital Dabush
Tirza Routtenberg
+ Coherent states and square integrable representations 1978 Henri Moscovici
Andrei Verona
+ PDF Chat Generalized Coherent States 2022 Mike Guidry
Yang Sun
+ Gelfand Triplets, Ladder Operators and Coherent States 2024 Maria Blazquez
M. Gadella
Gerardo Jimenez Trejo
+ The Hilbert Series of the Clique Complex 2005 Daniela Ferrarello
Ralf Fröberg
+ PDF Chat Coherent quantum dynamics: What fluctuations can tell 2015 John Schliemann