Affable equivalence relations and orbit structure of Cantor dynamical systems

Type: Article

Publication Date: 2004-03-09

Citations: 65

DOI: https://doi.org/10.1017/s014338570300066x

Locations

  • Ergodic Theory and Dynamical Systems - View

Similar Works

Action Title Year Authors
+ Orbit equivalence for Cantor minimal ℤ²-systems 2008 Thierry Giordano
Hiroki Matui
Ian F. Putnam
Christian Skau
+ Orbit equivalence for Cantor minimal Z^2-systems 2006 Thierry Giordano
Hiroki Matui
Ian F. Putnam
Christian Skau
+ Cantor minimal systems and AF-equivalence relations 2008 Heidi E. I. Dahl
+ PDF Chat The absorption theorem for affable equivalence relations 2008 Thierry Giordano
Hiroki Matui
Ian F. Putnam
Christian Skau
+ PDF Chat Full Groups and Orbit Equivalence in Cantor Dynamics 2010 Konstantin Medynets
+ Algebraic Invariants for Group Actions on the Cantor Set 2021 María Isabel Cortéz
+ ON FREE $\mathbb{Z}^d$ ACTION OF CANTOR MINIMAL SYSTEMS AND ORBIT EQUIVALENCE ($C^*$-algebras and its applications to topological dynamical systems) 2000 文亮 杉崎
+ Dynamics of Equicontinuous Group Actions on Cantor Sets 2015 Jessica Dyer
+ Strong Orbit Equivalence in Cantor dynamics and simple locally finite groups 2020 Simon Robert
+ PDF Chat Strong orbit equivalence in Cantor dynamics and simple locally finite groups 2022 Simon Robert
+ Cantor Dynamics 2018 Thierry Giordano
David Kerr
N. Christopher Phillips
Andrew Toms
+ Finite-rank Bratteli–Vershik diagrams are expansive 2008 Tomasz Downarowicz
Alejandro Maass
+ The absorption theorem for affable equivalence relations 2007 Thierry Giordano
Hiroki Matui
Ian F. Putnam
Christian Skau
+ The Absorption Theorem 2018 Thierry Giordano
David Kerr
N. Christopher Phillips
Andrew S. Toms
+ PDF Chat The Category of Ordered Bratteli Diagrams 2019 Massoud Amini
George A. Elliott
Nasser Golestani
+ A BRATTELI DIAGRAM FOR COMMUTING HOMEOMORPHISMS OF THE CANTOR SET 2000 A. H. Forrest
+ DINÂMICAS MINIMAIS EM CONJUNTOS DE CANTOR E DIAGRAMAS DE BRATTELI 2021 CAMILA SOBRINHO CRISPIM
+ Topological Orbit Equivalence for Cantor Minimal Systems 2003 Thierry Giordano
Ian F. Putnam
Christian Skau
+ Orbit equivalence of Cantor minimal systems: A survey and a new proof 2009 Ian F. Putnam
+ Orbit equivalence for Cantor minimal ℤ d -systems 2009 Thierry Giordano
Hiroki Matui
Ian F. Putnam
Christian Skau