Type: Article
Publication Date: 2012-03-01
Citations: 2
DOI: https://doi.org/10.7169/facm/2012.46.1.1
Let $f(x)=ax^{2^l\cdot3^m}+b\in \mathbb{Z}[x]$ be a polynomial with $l\geq 1, l+m\geq 2, ab\neq 0$ and such that $f(k)\neq 0$ for any $k\geq 1$. We prove, under $ABC$ conjecture, that the product $\prod_{k=1}^n f(k)$ is not a $2^l\cdot3^m$-th power for $n$ large enough.
Action | Title | Year | Authors |
---|---|---|---|
+ PDF Chat | Powerful numbers in (1ℓ + qℓ)(2ℓ + qℓ)⋯(nℓ + qℓ) | 2017 |
Quan-Hui Yang Qing-Qing Zhao |
+ PDF Chat | Polynomial products modulo primes and applications | 2020 |
Oleksiy Klurman Marc Munsch |