The asymptotic behaviour of certain integral functions

Type: Article

Publication Date: 1978-01-01

Citations: 0

DOI: https://doi.org/10.1090/s0002-9947-1978-0486507-2

Abstract

Let<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis z right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(z)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an integral function satisfying <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="integral Subscript Superscript normal infinity Baseline left-brace log m left-parenthesis r comma f right-parenthesis minus cosine pi rho log upper M left-parenthesis r comma f right-parenthesis right-brace Superscript plus Baseline StartFraction d r Over r Superscript rho plus 1 Baseline EndFraction greater-than normal infinity"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msubsup> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:msubsup> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>log</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mi>m</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mo>−<!-- − --></mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>cos</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mi>π<!-- π --></mml:mi> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mspace width="thinmathspace" /> <mml:mi>log</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mi>M</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msup> <mml:mo fence="false" stretchy="false">}</mml:mo> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> <mml:mfrac> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>d</mml:mi> <mml:mi>r</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>r</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> </mml:mfrac> <mml:mspace width="thinmathspace" /> <mml:mo>&gt;</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\int _{}^\infty \{\log \,m(r,f)\, - \,\cos \,\pi \rho \,\log \,M(r,f)\} ^ + }\frac {{dr}}{{{r^{\rho + 1}}}}\, &gt; \,\infty</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> and <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="0 greater-than limit Underscript ModifyingAbove r right-arrow normal infinity With bar Endscripts StartFraction log upper M left-parenthesis r comma f right-parenthesis Over r Superscript rho Baseline EndFraction greater-than normal infinity"> <mml:semantics> <mml:mrow> <mml:mn>0</mml:mn> <mml:mspace width="thinmathspace" /> <mml:mo>&gt;</mml:mo> <mml:mspace width="thinmathspace" /> <mml:munder> <mml:mo form="prefix">lim</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mrow> <mml:mi>r</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:mo accent="false">¯<!-- ¯ --></mml:mo> </mml:mover> </mml:mrow> </mml:munder> <mml:mspace width="thinmathspace" /> <mml:mfrac> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>log</mml:mi> <mml:mspace width="thinmathspace" /> <mml:mi>M</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>r</mml:mi> <mml:mo>,</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>r</mml:mi> <mml:mi>ρ<!-- ρ --></mml:mi> </mml:msup> </mml:mrow> </mml:mrow> </mml:mfrac> <mml:mspace width="thinmathspace" /> <mml:mo>&gt;</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">0\, &gt; \,\lim \limits _{\overline {r\, \to \infty } } \,\frac {{\log \,M(r,f)}}{{{r^\rho }}}\, &gt; \,\infty</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula> for some <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="rho colon 0 greater-than rho greater-than 1"> <mml:semantics> <mml:mrow> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo>:</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mn>0</mml:mn> <mml:mspace width="thinmathspace" /> <mml:mo>&gt;</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mspace width="thinmathspace" /> <mml:mo>&gt;</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\rho :\,0\, &gt; \,\rho \, &gt; \,1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is shown that such functions have regular asymptotic behaviour outside a set of circles with centres <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="zeta Subscript i"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ζ<!-- ζ --></mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\zeta _i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and radii <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t Subscript i"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{t_i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for which <disp-formula content-type="math/mathml"> \[ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation Underscript i equals 1 Overscript normal infinity Endscripts StartFraction t Subscript i Baseline Over StartAbsoluteValue zeta Subscript i Baseline EndAbsoluteValue EndFraction greater-than normal infinity"> <mml:semantics> <mml:mrow> <mml:munderover> <mml:mo movablelimits="false">∑<!-- ∑ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:munderover> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mfrac> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>t</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow> <mml:mo>|</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ζ<!-- ζ --></mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:mrow> <mml:mo>|</mml:mo> </mml:mrow> </mml:mrow> </mml:mfrac> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum \limits _{i = 1}^\infty {\frac {{{t_i}}}{{\left | {{\zeta _i}} \right |}}} &gt; \infty</mml:annotation> </mml:semantics> </mml:math> \] </disp-formula>.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Asymptotic expansions of integrals of certain rapidly oscillating functions 1987 Uddyalok Banerjee
L. J. Lardy
Adam Lutoborski
+ PDF Chat Some properties of asymptotic functions and their applications 1978 Ling Yau Chan
+ PDF Chat An asymptotic approximation for a type of Fourier integral 1978 Paul W. Schmidt
+ Asymptotic developments of certain integral functions 1942 Cleota G. Fry
Howard K. Hughes
+ The asymptotic evaluation of certain integrals 1963 A. Erdélyi
Max Wyman
+ The Asymptotic Approximation of Certain Integrals 1970 Frank Stenger
+ PDF Chat Asymptotic expansion of ∫^{𝜋/2}₀𝐽²_{𝜈}(𝜆𝑐𝑜𝑠𝜃)𝑑𝜃 1988 R. Wong
+ PDF Chat Asymptotic Behavior of Solutions to a Vector Integral Equation with Deviating Arguments 2013 Cristóbal González
Antonio Jiménez-Melado
+ PDF Chat On the asymptotic evaluation of $\int\sp {\pi/2}\sb 0J\sp 2\sb 0(\lambda\,{\rm sin}\,x)dx$ 1987 B. J. Stoyanov
Richard A. Farrell
+ Asymptotic behavior of a class of integrals 1973 Jae Ung Shim
+ Asymptotic behavior of an integral equation of Allen-Cahn type 2025 Yutian Lei
+ Asymptotic Evaluation of Integrals 2003 Mark J. Ablowitz
A. S. Fokas
+ Integral functions 2011 K.A. Stroud
Dexter Booth
+ INTEGRAL FUNCTIONS 1966 E. G. Phillips
+ The Asymptotic Approximation of Integrals 2018 Alan W. Bush
+ The Asymptotic Approximation of Integrals 1992
+ PDF Chat Some integrals relating to the 𝐼ₑ-function 1983 Shigehiko Okui
+ PDF Chat Functions and integrals 1972 J. Malone
+ Asymptotic expansions for a class of q-integral transforms 2007 Néji Bettaibi
Jamel El Kamel
+ PDF Chat Laplace type integrals: transformation to standard form and uniform asymptotic expansions 1985 Nico Μ. Τemme

Works That Cite This (0)

Action Title Year Authors