Type: Article
Publication Date: 2006-10-01
Citations: 21
DOI: https://doi.org/10.1109/focs.2006.19
Spielman and Teng proved that the shadow-vertex simplex method had polynomial smoothed complexity. On a slight random perturbation of arbitrary linear program, the simplex method finds the solution after a walk on the feasible polytope(s) with expected length polynomial in the number of constraints n, the number of variables d and the inverse standard deviation of the perturbation 1/sigma. We show that the length of walk is actually polylogarithmic in the number of constraints n. We thus improve Spielman-Teng's bound on the walk O*(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">86</sup> d <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">55</sup> sigma <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-30</sup> ) to O(max(d <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sup> log <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> n, d <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">9</sup> log <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> d, d <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> sigma <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-4</sup> )). This in particular shows that the tight Hirsch conjecture n - d on the diameter of polytopes is not a limitation for the smoothed linear programming. Random perturbations create short paths between vertices. We propose a randomized phase-I for solving arbitrary linear programs. Instead of finding a vertex of a feasible set, we add a vertex at random to the feasible set. This does not affect the solution of the linear program with constant probability. So, in expectation it takes a constant number of independent trials until a correct solution is found. This overcomes one of the major difficulties of smoothed analysis of the simplex method - one can now statistically decouple the walk from the smoothed linear program. This yields a much better reduction of the smoothed complexity to a geometric quantity - the size of planar sections of random polytopes. We also improve upon the known estimates for that size