Beyond Hirsch Conjecture: Walks on Random Polytopes and Smoothed Complexity of the Simplex Method

Type: Article

Publication Date: 2006-10-01

Citations: 21

DOI: https://doi.org/10.1109/focs.2006.19

Download PDF

Abstract

Spielman and Teng proved that the shadow-vertex simplex method had polynomial smoothed complexity. On a slight random perturbation of arbitrary linear program, the simplex method finds the solution after a walk on the feasible polytope(s) with expected length polynomial in the number of constraints n, the number of variables d and the inverse standard deviation of the perturbation 1/sigma. We show that the length of walk is actually polylogarithmic in the number of constraints n. We thus improve Spielman-Teng's bound on the walk O*(n <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">86</sup> d <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">55</sup> sigma <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-30</sup> ) to O(max(d <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sup> log <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> n, d <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">9</sup> log <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> d, d <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> sigma <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-4</sup> )). This in particular shows that the tight Hirsch conjecture n - d on the diameter of polytopes is not a limitation for the smoothed linear programming. Random perturbations create short paths between vertices. We propose a randomized phase-I for solving arbitrary linear programs. Instead of finding a vertex of a feasible set, we add a vertex at random to the feasible set. This does not affect the solution of the linear program with constant probability. So, in expectation it takes a constant number of independent trials until a correct solution is found. This overcomes one of the major difficulties of smoothed analysis of the simplex method - one can now statistically decouple the walk from the smoothed linear program. This yields a much better reduction of the smoothed complexity to a geometric quantity - the size of planar sections of random polytopes. We also improve upon the known estimates for that size

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Beyond Hirsch Conjecture: walks on random polytopes and smoothed complexity of the simplex method 2006 Roman Vershynin
+ Beyond Hirsch Conjecture: walks on random polytopes and smoothed complexity of the simplex method 2006 Roman Vershynin
+ PDF Chat Beyond Hirsch Conjecture: Walks on Random Polytopes and Smoothed Complexity of the Simplex Method 2009 Roman Vershynin
+ Upper and Lower Bounds on the Smoothed Complexity of the Simplex Method 2022 Sophie Huiberts
Yin Tat Lee
Xinzhi Zhang
+ PDF Chat A Friendly Smoothed Analysis of the Simplex Method 2020 Daniel Dadush
Sophie Huiberts
+ Improved Smoothed Analysis of the Shadow Vertex Simplex Method 2005 Ajay Deshpande
Daniel A. Spielman
+ Upper and Lower Bounds on the Smoothed Complexity of the Simplex Method 2023 Sophie Huiberts
Yin Tat Lee
Xinzhi Zhang
+ A Friendly Smoothed Analysis of the Simplex Method 2017 Daniel Dadush
Sophie Huiberts
+ A Friendly Smoothed Analysis of the Simplex Method 2017 Daniel Dadush
Sophie Huiberts
+ PDF Chat A randomized polynomial-time simplex algorithm for linear programming 2006 Jonathan A. Kelner
Daniel A. Spielman
+ PDF Chat A friendly smoothed analysis of the simplex method 2018 Daniel Dadush
Sophie Huiberts
+ PDF Chat Linear Programs Where Every Shadow Simplex Path is Exponentially Long 2024 Alexander E. Black
+ Simplex slicing: An asymptotically-sharp lower bound 2024 Colin Tang
+ On the Shadow Simplex Method for Curved Polyhedra 2014 Daniel Dadush
Nicolai Hähnle
+ On the Shadow Simplex Method for Curved Polyhedra 2014 Daniel Dadush
Nicolai Hähnle
+ PDF Chat Random Shadows of Fixed Polytopes 2024 Alexander E. Black
Francisco Javier GarcĂ­a Criado
+ Solving Totally Unimodular LPs with the Shadow Vertex Algorithm 2014 Tobias Brunsch
Anna Großwendt
Heiko RĂśglin
+ The Simplex Algorithm in Dimension Three 2003 Volker Kaibel
Rafael Mechtel
Micha Sharir
Guenter M. Ziegler
+ Geometric Random Edge 2014 Friedrich Eisenbrand
Santosh Vempala
+ PDF Chat A Sharp Upper Bound for the Expected Number of Shadow Vertices in LP-Polyhedra Under Orthogonal Projection on Two-Dimensional Planes 1999 Karl Heinz Borgwardt