Separability conditions from entropic uncertainty relations

Type: Article

Publication Date: 2004-07-08

Citations: 102

DOI: https://doi.org/10.1103/physreva.70.012102

Abstract

We derive a collection of separability conditions for bipartite systems of dimension $d\ifmmode\times\else\texttimes\fi{}d$ which is based on the entropic version of the uncertainty relations. A detailed analysis of the two-qubit case is given by comparing the new separability conditions with existing criteria.

Locations

  • Physical Review A - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Separability Criteria from Uncertainty Relations 2004 Otfried GĂźhne
+ Tight bounds from multiple observables entropic uncertainty relations 2022 Alberto Riccardi
Giovanni Chesi
Chiara Macchiavello
Lorenzo Maccone
+ PDF Chat A class of inequalities inducing new separability criteria for bipartite quantum systems 2008 Paolo Aniello
Cosmo Lupo
+ PDF Chat Entanglement criteria and full separability of multi-qubit quantum states 2010 Otfried GĂźhne
+ PDF Chat Improved entropic uncertainty relations and information exclusion relations 2014 Patrick J. Coles
Marco Piani
+ PDF Chat Sequences of lower bounds for entropic uncertainty relations from bistochastic maps 2020 Paolo Giorda
+ Quantum entanglement: an overview of the separability problem in two quantum bits 2022 Honorine Gnonfin
Laure Gouba
+ PDF Chat Tight Bounds from Multiple‐Observable Entropic Uncertainty Relations 2024 Alberto Riccardi
Giovanni Chesi
Chiara Macchiavello
Lorenzo Maccone
+ A new class of separability criteria for bipartite quantum systems 2007 Paolo Aniello
Cosmo Lupo
+ On some entropic entanglement parameter 2006 Barbara Synak-Radtke
Łukasz Pańkowski
Michał Horodecki
Ryszard Horodecki
+ On some entropic entanglement parameter 2006 Barbara Synak-Radtke
Łukasz Pańkowski
Michał Horodecki
Ryszard Horodecki
+ PDF Chat Separability conditions from the Landau-Pollak uncertainty relation 2005 Julio I. de Vicente
Jorge SĂĄnchez-Ruiz
+ Entropy inequalities and Bell inequalities for two-qubit systems (6 pages) 2004 Emilio Santos
+ PDF Chat Covariance Matrices and the Separability Problem 2007 Otfried GĂźhne
P. Hyllus
Oleg Gittsovich
Jens Eisert
+ PDF Chat Beyond the standard entropic inequalities: Stronger scalar separability criteria and their applications 2008 Remigiusz Augusiak
Julia Stasińska
Paweł Horodecki
+ PDF Chat Separability criterion for quantum effects 2018 Ikko Hamamura
+ PDF Chat Characterizing the entanglement of bipartite quantum systems 2003 Vittorio Giovannetti
Stefano Mancini
David Vitali
Paolo Tombesi
+ PDF Chat Experimentally Accessible Bounds on Distillable Entanglement from Entropic Uncertainty Relations 2021 Bjarne Bergh
Martin Gärttner
+ PDF Chat Lower bounds on concurrence and separability conditions 2007 Julio I. de Vicente
+ PDF Chat Entropic uncertainty relations—a survey 2010 Stephanie Wehner
Andreas Winter

Works That Cite This (49)

Action Title Year Authors
+ PDF Chat Entanglement Detection via Direct-Sum Majorization Uncertainty Relations 2020 Kun Wang
Nan Wu
Fangmin Song
+ PDF Chat Tight Bounds from Multiple‐Observable Entropic Uncertainty Relations 2024 Alberto Riccardi
Giovanni Chesi
Chiara Macchiavello
Lorenzo Maccone
+ PDF Chat Entanglement detection 2009 Otfried GĂźhne
G. TĂłth
+ PDF Chat Entropic entanglement criteria for Fermion systems 2012 Claudia Zander
A. Plastino
M. Casas
A. Plastino
+ PDF Chat Lower bounds on concurrence and separability conditions 2007 Julio I. de Vicente
+ Entropic uncertainty relations for multiple measurements assigned with biased weights 2023 Shan Huang
Hua‐Lei Yin
Zeng‐Bing Chen
Shengjun Wu
+ PDF Chat From the quantum relative Tsallis entropy to its conditional form: Separability criterion beyond local and global spectra 2014 A. K. Rajagopal
Sudha
Anantha S. Nayak
A. R. Usha Devi
+ PDF Chat Characterizing nonlocal correlations via universal uncertainty relations 2017 Zhian Jia
Yu-Chun Wu
Guang‐Can Guo
+ PDF Chat Geometric formulation of the uncertainty principle 2014 G. M. Bosyk
TristĂĄn M. OsĂĄn
Pedro W. Lamberti
M. Portesi
+ PDF Chat Separability of a family of one-parameter<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>W</mml:mi></mml:mrow></mml:math>and Greenberger-Horne-Zeilinger multiqubit states using the Abe-Rajagopal<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>q</mml:mi></mml:mrow></mml:math>-conditional-entropy approach 2007 R. Prabhu
A. R. Usha Devi
G. Padmanabha