A NOTE ON UNITS OF REAL QUADRATIC FIELDS

Type: Article

Publication Date: 2012-07-31

Citations: 3

DOI: https://doi.org/10.4134/bkms.2012.49.4.767

Abstract

For a positive square-free integer <TEX>$d$</TEX>, let <TEX>$t_d$</TEX> and <TEX>$u_d$</TEX> be positive integers such that <TEX>${\epsilon}_d=\frac{t_d+u_d{\sqrt{d}}}{\sigma}$</TEX> is the fundamental unit of the real quadratic field <TEX>$\mathbb{Q}(\sqrt{d})$</TEX>, where <TEX>${\sigma}=2$</TEX> if <TEX>$d{\equiv}1$</TEX> (mod 4) and <TEX>${\sigma}=1$</TEX> otherwise For a given positive integer <TEX>$l$</TEX> and a palindromic sequence of positive integers <TEX>$a_1$</TEX>, <TEX>${\ldots}$</TEX>, <TEX>$a_{l-1}$</TEX>, we define the set <TEX>$S(l;a_1,{\ldots},a_{l-1})$</TEX> := {<TEX>$d{\in}\mathbb{Z}|d$</TEX> > 0, <TEX>$\sqrt{d}=[a_0,\overline{a_1,{\ldots},2a_0}]$</TEX>}. We prove that <TEX>$u_d$</TEX> < <TEX>$d$</TEX> for all square-free integer <TEX>$d{\in}S(l;a_1,{\ldots},a_{l-1})$</TEX> with one possible exception and apply it to Ankeny-Artin-Chowla conjecture and Mordell conjecture.

Locations

  • Bulletin of the Korean Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ A note on unit and class number of real quadratic fields 1989 Takashi Agoh
+ Fundamental units for real quadratic fields determined by continued fraction conditions 2020 Ă–zen Ă–zer
+ A Conjecture Connected with Units of Quadratic Fields 2012 Nihal Bircan
+ PDF Chat Necessary and sufficient conditions for the class number of a real quadratic field to be one, and a conjecture of S. Chowla 1988 R. A. Mollin
+ A note on the fundamental unit in some types of the real quadratic number fields 2016 Ă–zen Ă–zer
+ Explicit Form of Fundamental Units of Certain Real Quadratic Fields 2014 Gül Karadeniz Gözeri
Ayten Peki̇n
+ Representation of Algebraic Integers as Sum of Units over the Real Quadratic Fields 2019 Saad A. Baddai
+ Algebraic integers as special values of modular units 2010 Ja Kyung Koo
Dong Hwa Shin
Dong Sung Yoon
+ Algebraic integers as special values of modular units 2010 Ja Kyung Koo
Dong Hwa Shin
Dong Sung Yoon
+ PDF Chat Unlimited lists of fundamental units of quadratic fields - Applications 2022 Georges Gras
+ Indecomposable integers in real quadratic fields of odd discriminant 2018 Magdaléna Tinková
+ On fundamental units of real quadratic fields of class number 1 2019 Andrej Dujella
Florian Luca
+ PDF Chat An Infinite Family of Real Quadratic Fields with Three Classes of Perfect Unary Forms 2024 Christian Porter
+ PDF Chat Representaion of Algebraic Integers as Sum of Units over the Real Quadratic Fields 2020 Saad A. Baddai
+ Relationships between p-unit constructions for real quadratic fields 2010 Hugo Chapdelaine
+ Relationships between p-unit constructions for real quadratic fields 2010 Hugo Chapdelaine
+ Notes on the Quadratic Integers and Real Quadratic Number Fields 2012 Jeong-Ho Park
+ Fundamental units of real quadratic fields of odd class number 2014 Zhe Zhang
Qin Yue
+ Sums of squares and Diagonal quadratic form on real bi-quadratic fields 2021 Srijonee Shabnam Chaudhury
+ PDF Chat Explicit representation of fundamental units of some quadratic fields 1995 Koshi Tomita