Partial Weyl law for billiards

Type: Article

Publication Date: 2011-04-28

Citations: 7

DOI: https://doi.org/10.1209/0295-5075/94/30004

Abstract

For two-dimensional quantum billiards we derive the partial Weyl law, i.e. the average density of states, for a subset of eigenstates concentrating on an invariant region Γ of phase space. The leading term is proportional to the area of the billiard times the phase-space fraction of Γ. The boundary term is proportional to the fraction of the boundary where parallel trajectories belong to Γ. Our result is numerically confirmed for the mushroom billiard and the generic cosine billiard, where we count the number of chaotic and regular states, and for the elliptical billiard, where we consider rotating and oscillating states.

Locations

  • EPL (Europhysics Letters) - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ How long is the chaotic boundary of a billiard 2010 Arnd Bäcker
Roland Ketzmerick
Steffen Löck
Holger Schanz
+ PDF Chat Periodic chaotic billiards: Quantum-classical correspondence in energy space 2001 G. A. Luna‐Acosta
J. A. Méndez‐Bermúdez
F. M. Izrailev
+ PDF Chat The quantum mechanics of chaotic billiards 1999 Giulio Casati
Tomaž Prosen
+ Classical and Quantum Elliptical Billiards: Mixed Phase Space and Short Correlations in Singlets and Doublets 2023 T. Araújo Lima
R. B. do Carmo
+ PDF Chat On the number of bouncing ball modes in billiards 1997 Arnd Bäcker
Roman Schubert
P. Stifter
+ Statistical mechanics of random billiard systems 2014 Renato Feres
+ Dynamical billiards 2007 Leonid Bunimovich
+ PDF Chat Classical and Quantum Elliptical Billiards: Mixed Phase Space and Short Correlations in Singlets and Doublets 2023 T. Araújo Lima
R. B. do Carmo
+ Quantum chaos in rectangular billiard 2008 Edgar González
J Roldán
+ Ergodicity and correlation decay in billiards 2005 Imre Péter Tóth
+ PDF Chat Statistical properties of the localization measure of chaotic eigenstates and the spectral statistics in a mixed-type billiard 2019 Benjamin Batistić
Črt Lozej
Marko Robnik
+ PDF Chat Introduction to Focus Issue: Statistical mechanics and billiard-type dynamical systems 2012 Edson D. Leonel
Marcus W. Beims
Leonid Bunimovich
+ Periodic trajectories of the Birkhoff billiard 1991
+ Trace formula for counting nodal domains on the boundaries of chaotic 2D billiards 2010 Amit Aronovitch
Uzy Smilansky
+ Quantum chaos in mesoscopic open billiards 1995 広武 石尾
+ Periodic billiard trajectories in a magnetic field 2005 �. V. Kozlov
S. A. Polikarpov
+ PDF Chat Dynamical localization of chaotic eigenstates in the mixed-type systems: spectral statistics in a billiard system after separation of regular and chaotic eigenstates 2013 Benjamin Batistić
Marko Robnik
+ PDF Chat Hyperbolic billiards and statistical physics 2007 N. Chernov
Dmitry Dolgopyat
+ Decay of correlations and control of chaotic billiards 1997 Ralph Willox
I. Αντωνίου
Jacob Levitan
+ PDF Chat Entanglement distribution statistic in Andreev billiards 2017 J. G. G. S. Ramos
A. F. Macedo-Junior
A. L. R. Barbosa