Minimization of $\lambda_{2}(\Omega)$ with a perimeter constraint

Type: Article

Publication Date: 2009-01-01

Citations: 31

DOI: https://doi.org/10.1512/iumj.2009.58.3768

Abstract

We study the problem of minimizing the second Dirichlet eigenvalue for the Laplacian operator among sets of given perimeter. In two dimensions, we prove that the optimum exists, is convex, regular, and its boundary contains exactly two points where the curvature vanishes. In $N$ dimensions, we prove a more general existence theorem for a class of functionals which is decreasing with respect to set inclusion and $γ$ lower semicontinuous.

Locations

  • Indiana University Mathematics Journal - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Minimization of $\lambda_2(\Omega)$ with a perimeter constraint 2009 Dorin Bucur
Giuseppe Buttazzo
Antoine Henrot
+ Regularity result for a shape optimization problem under perimeter constraint 2016 Beniamin Bogosel
+ Regularity result for a shape optimization problem under perimeter constraint 2016 Beniamin Bogosel
+ Regularity result for a shape optimization problem under perimeter constraint 2019 Beniamin Bogosel
+ Regularity of Minimizers of Shape Optimization Problems involving Perimeter 2016 Guido De Philippis
Jimmy Lamboley
Michel Pierre
Bozhidar Velichkov
+ Regularity of Minimizers of Shape Optimization Problems involving Perimeter 2016 Guido De Philippis
Jimmy Lamboley
Pierre Michel
Bozhidar Velichkov
+ Regularity of the optimal sets for the second Dirichlet eigenvalue 2020 Dario Mazzoleni
Baptiste Trey
Bozhidar Velichkov
+ PDF Chat Regularity of the optimal sets for the second Dirichlet eigenvalue 2022 Dario Mazzoleni
Baptiste Trey
Bozhidar Velichkov
+ On the minimisation of Neumann and Zaremba eigenvalues 2023 Sam Farrington
+ Optimization of nonlinear eigenvalues under measure or perimeter constraint 2020 Dario Mazzoleni
+ Minimization of the $k$ -th eigenvalue of the Robin-Laplacian with perimeter constraint 2023 Simone Cito
Alessandro Giacomini
+ Regularity of minimizers of shape optimization problems involving perimeter 2017 Guido De Philippis
Jimmy Lamboley
Michel Pierre
Bozhidar Velichkov
+ PDF Chat Minimization problems for eigenvalues of the Laplacian 2003 Antoine Henrot
+ PDF Chat Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form 2020 Baptiste Trey
+ PDF Chat Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set, II: Non-Convex Domains and Higher Dimensions 2019 David Krejčiřı́k
Vladimir Lotoreichik
+ Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle 2017 Antoine Henrot
Davide Zucco
+ Optimisation of the lowest Robin eigenvalue in the exterior of a compact set 2016 David Krejčiřı́k
Vladimir Lotoreichik
+ Optimisation of the lowest Robin eigenvalue in the exterior of a compact set 2016 David Krejčiřı́k
Vladimir Lotoreichik
+ PDF Chat Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle 2018 Antoine Henrot
Davide Zucco
+ Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle 2017 Antoine Henrot
Davide Zucco