Stability of zero modes in parafermion chains

Type: Article

Publication Date: 2014-10-07

Citations: 82

DOI: https://doi.org/10.1103/physrevb.90.165106

Abstract

One-dimensional topological phases can host localized zero-energy modes that enable high-fidelity storage and manipulation of quantum information. Majorana fermion chains support a classic example of such a phase, having zero modes that guarantee two-fold degeneracy in all eigenstates up to exponentially small finite-size corrections. Chains of `parafermions'---generalized Majorana fermions---also support localized zero modes, but, curiously, only under much more restricted circumstances. We shed light on the enigmatic zero mode stability in parafermion chains by analytically and numerically studying the spectrum and developing an intuitive physical picture in terms of domain-wall dynamics. Specifically, we show that even if the system resides in a gapped topological phase with an exponentially accurate ground-state degeneracy, higher-energy states can exhibit a splitting that scales as a power law with system size---categorically ruling out exact localized zero modes. The transition to power-law behavior is described by critical behavior appearing exclusively within excited states.

Locations

  • arXiv (Cornell University) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ PDF Chat Fermionized parafermions and symmetry-enriched Majorana modes 2018 Aaron Chew
David F. Mross
Jason Alicea
+ PDF Chat Topological Phases with Parafermions: Theory and Blueprints 2016 Jason Alicea
Paul Fendley
+ PDF Chat Nonuniform Parafermion Chains: Low-Energy Physics and Finite-Size Effects 2024 Mohammad Mahdi Nasiri Fatmehsari
Mohammad-Sadegh Vaezi
+ PDF Chat Topological zero modes and edge symmetries of metastable Markovian bosonic systems 2023 Vincent Paul Flynn
Emilio Cobanera
Lorenza Viola
+ PDF Chat Topology by Dissipation: Majorana Bosons in Metastable Quadratic Markovian Dynamics 2021 Vincent Paul Flynn
Emilio Cobanera
Lorenza Viola
+ A simple electronic ladder model harboring $\mathbb{Z}_4$ parafermions 2023 Botond Osváth
Gergely Barcza
Örs Legeza
Balázs Dóra
László Oroszlány
+ Topological zero modes and edge symmetries of metastable Markovian bosonic systems 2023 Vincent Paul Flynn
Emilio Cobanera
Lorenza Viola
+ PDF Chat Dynamical topological excitations in parafermion chains 2021 Vilja Kaskela
José L. Lado
+ Topology by Dissipation and Majorana Bosons in Metastable Quadratic Markovian Dynamics 2021 Vincent Paul Flynn
Emilio Cobanera
Lorenza Viola
+ PDF Chat Topologically induced prescrambling and dynamical detection of topological phase transitions at infinite temperature 2020 Ceren B. Dağ
Luming Duan
Kai Sun
+ Isolated Majorana mode in a quantum computer from a duality twist 2023 Sutapa Samanta
Derek S. Wang
Armin Rahmani
Aditi Mitra
+ PDF Chat Anomalous quantum information scrambling for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> parafermion chains 2021 Shun-Yao Zhang
Dong-Ling Deng
+ Out-of-time-order correlators at infinite temperature: Scrambling, Order and Topological Phase Transitions 2019 Ceren B. Dağ
Luming Duan
Kai Sun
+ PDF Chat Topological phase, supercritical point, and emergent phenomena in an extended parafermion chain 2019 Shunyao Zhang
Hong-Ze Xu
Yue-Xin Huang
Guo‐Ping Guo
Zheng-Wei Zhou
Ming Gong
+ Mobile Majorana zero-modes in two-channel Kondo insulators 2021 Milan Kornjača
Victor L. Quito
Rebecca Flint
+ Mobile Majorana zero-modes in two-channel Kondo insulators 2021 Milan Kornjača
Victor L. Quito
Rebecca Flint
+ Topological phase, supercritical point and emergent fermions in the extended parafermion chain 2018 Shunyao Zhang
Hong-Ze Xu
Yue-Xin Huang
Guang-Can Guo
Zhengwei Zhou
Ming Gong
+ PDF Chat Interaction-induced strong zero modes in short quantum dot chains with time-reversal symmetry 2024 A. Mert Bozkurt
Sebastian Miles
Sebastiaan L. D. ten Haaf
Chun-Xiao Liu
Fabian Hassler
Michael Wimmer
+ PDF Chat Parafermion chain with<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>2</mml:mn><mml:mi>π</mml:mi><mml:mo>/</mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:math>Floquet edge modes 2016 G. J. Sreejith
Achilleas Lazarides
Roderich Moessner
+ PDF Chat Extended edge modes and disorder preservation of a symmetry-protected topological phase out of equilibrium 2024 T. L. M. Lane
Miklós Horváth
Kristian Patrick

Works That Cite This (81)

Action Title Year Authors
+ PDF Chat Localization-protected order in spin chains with non-Abelian discrete symmetries 2018 Aaron J. Friedman
Romain Vasseur
Andrew C. Potter
S. A. Parameswaran
+ PDF Chat Symmetry-Enhanced Boundary Qubits at Infinite Temperature 2020 Jack Kemp
Norman Y. Yao
Chris R. Laumann
+ PDF Chat Quantum clock models with infinite-range interactions 2020 Adu Offei-Danso
Federica Maria Surace
Fernando Iemini
Angelo Russomanno
Rosario Fazio
+ PDF Chat Topological Phases with Parafermions: Theory and Blueprints 2016 Jason Alicea
Paul Fendley
+ PDF Chat Numerical study of the chiral <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> quantum phase transition in one spatial dimension 2018 Rhine Samajdar
Soonwon Choi
Hannes Pichler
Mikhail D. Lukin
Subir Sachdev
+ PDF Chat Phase diagram of the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Z</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>parafermionic chain with chiral interactions 2015 Ye Zhuang
Hitesh J. Changlani
Norm M. Tubman
Taylor L. Hughes
+ PDF Chat Nontopological parafermions in a one-dimensional fermionic model with even multiplet pairing 2018 Leonardo Mazza
Fernando Iemini
Marcello Dalmonte
Christophe Mora
+ PDF Chat Nonequilibrium critical dynamics in the quantum chiral clock model 2019 Rui-Zhen Huang
Shuai Yin
+ PDF Chat Optimal free descriptions of many-body theories 2017 Christopher J. Turner
Konstantinos Meichanetzidis
Zlatko Papić
Jiannis K. Pachos
+ PDF Chat Identification of Majorana Modes in Interacting Systems by Local Integrals of Motion 2018 Andrzej Więckowski
Maciej M. Maśka
Marcin Mierzejewski

Works Cited by This (30)

Action Title Year Authors
+ PDF Chat Fractional helical liquids in quantum wires 2014 Yuval Oreg
Eran Sela
Ady Stern
+ PDF Chat Exotic non-Abelian anyons from conventional fractional quantum Hall states 2013 David J. Clarke
Jason Alicea
Kirill Shtengel
+ PDF Chat Time-Reversal-Invariant<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>Fractional Josephson Effect 2014 Fan Zhang
C. L. Kane
+ PDF Chat Twist defects and projective non-Abelian braiding statistics 2013 Maissam Barkeshli
Chao‐Ming Jian
Xiao-Liang Qi
+ PDF Chat Topological phases in two-dimensional arrays of parafermionic zero modes 2013 Michele Burrello
B. van Heck
Emilio Cobanera
+ PDF Chat Universal Topological Quantum Computation from a Superconductor-Abelian Quantum Hall Heterostructure 2014 Roger S. K. Mong
David J. Clarke
Jason Alicea
Netanel H. Lindner
Paul Fendley
Chetan Nayak
Yuval Oreg
Ady Stern
Erez Berg
Kirill Shtengel
+ PDF Chat Superconducting proximity effect on the edge of fractional topological insulators 2012 Meng Cheng
+ PDF Chat Fractional topological superconductor with fractionalized Majorana fermions 2013 Abolhassan Vaezi
+ PDF Chat Quantum field theory and the Jones polynomial 1989 Edward Witten
+ PDF Chat Metaplectic anyons, Majorana zero modes, and their computational power 2013 Matthew B. Hastings
Chetan Nayak
Zhenghan Wang