Type: Article
Publication Date: 2004-05-01
Citations: 2
DOI: https://doi.org/10.1142/s0129167x04002272
In this paper we extend the result on base point freeness of the powers of the determinant bundle on the moduli space of vector bundles on a curve. We describe the parabolic analogues of parabolic theta functions, then we determine a uniform bound depending only on the rank of the parabolic bundles. In order to get this bound, we construct a parabolic analogue of Grothendieck's scheme of quotients, which parametrizes quotient bundles of a parabolic bundle, of fixed parabolic Hilbert polynomial. We prove an estimate for its dimension, which extends the result of Popa and Roth on the dimension of the Quot scheme. As an application of the theorem on base point freeness, we characterize parabolic semistability on the algebraic stack of quasi-parabolic bundles as the base locus of the linear system of the parabolic determinant bundle.