On uniqueness of 𝑝-adic meromorphic functions

Type: Article

Publication Date: 1998-01-01

Citations: 15

DOI: https://doi.org/10.1090/s0002-9939-98-04533-x

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a complete ultrametric algebraically closed field of characteristic zero, and let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M left-parenthesis upper K right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\mathcal {M}} (K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the field of meromorphic functions in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For all set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f element-of script upper M left-parenthesis upper K right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f\in {\mathcal {M}}(K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we denote by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E left-parenthesis f comma upper S right-parenthesis"> <mml:semantics> <mml:mstyle displaystyle="true" scriptlevel="0"> <mml:mi>E</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mstyle> <mml:annotation encoding="application/x-tex">\displaystyle E(f,S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the subset of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K times double-struck upper N Superscript asterisk"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>×</mml:mo> </mml:mrow> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">N</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">K {\times } {\mathbb {N}}^{*}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="union Underscript a element-of upper S Endscripts left-brace left-parenthesis z comma q right-parenthesis element-of upper K times double-struck upper N Superscript asterisk Baseline vertical-bar z"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:munder> <mml:mo>⋃</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>a</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>S</mml:mi> </mml:mrow> </mml:munder> </mml:mrow> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>∈</mml:mo> <mml:mi>K</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>×</mml:mo> </mml:mrow> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">N</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>∗</mml:mo> </mml:mrow> </mml:msup> <mml:mo fence="false" stretchy="false">|</mml:mo> <mml:mi>z</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">{\bigcup _{ a\in S}}\{(z,q)\in K {\times } \mathbb {N}^{*} \vert z</mml:annotation> </mml:semantics> </mml:math> </inline-formula> zero of order <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="q of f left-parenthesis z right-parenthesis minus a right-brace period"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mtext> of</mml:mtext> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>−</mml:mo> <mml:mi>a</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> <mml:mo>.</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">q \text { of} f(z)-a\}.</mml:annotation> </mml:semantics> </mml:math> </inline-formula> After studying unique range sets for entire functions in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in a previous article, here we consider a similar problem for meromorphic functions by showing, in particular, that, for every <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 5"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n\geq 5</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, there exist sets <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> elements in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding="application/x-tex">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that, if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f comma g element-of script upper M left-parenthesis upper K right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f, g\in {\mathcal {M}} (K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> have the same poles (counting multiplicities), and satisfy <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E left-parenthesis f comma upper S right-parenthesis equals upper E left-parenthesis g comma upper S right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>f</mml:mi> <mml:mo>,</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>g</mml:mi> <mml:mo>,</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">E(f,S)=E(g,S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f equals g"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>=</mml:mo> <mml:mi>g</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">f=g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show how to construct such sets.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On one problem of uniqueness of meromorphic functions concerning small functions 2001 Hong‐Xun Yi
+ On factorization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e19" altimg="si6.svg"><mml:mi>p</mml:mi></mml:math>-adic meromorphic functions 2020 Bilal Saoudi
Abdelbaki Boutabaa
Tahar Zerzaihi
+ PDF Chat A characterization of sums of 2𝑛th powers of global meromorphic functions 1990 Jesús M. Ruíz
+ Iteration of a class of hyperbolic meromorphic functions 1999 P. J. Rippon
Gwyneth M. Stallard
+ PDF Chat On the existence of fixpoints of composite meromorphic functions 1992 Walter Bergweiler
+ PDF Chat Separating 𝑝-bases and transcendental extension fields 1972 John N. Mordeson
Bernard Vinograde
+ PDF Chat On the unique range set of meromorphic functions 1996 Ping Li
Chung-Chun Yang
+ Families of Baker domains II 1999 P. J. Rippon
Gwyneth M. Stallard
+ Meromorphic functions and factoriality 2005 Wojciech Kucharz
+ PDF Chat Weak subordination and stable classes of meromorphic functions 1980 Kenneth Stephenson
+ The existence of quasimeromorphic mappings in dimension 3 2006 Emil Saucan
+ PDF Chat $p$-adic hyperbolic planes and modular forms 1994 John A. Rhodes
+ Uniqueness of p-adic meromorphic functions 1997 Abdelbaki Boutabaa
Alain Escassut
+ PDF Chat Meromorphic functions on a compact Riemann surface and associated complete minimal surfaces 1989 Kichoon Yang
+ p-Adic meromorphic functions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mi>f</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:msup><mml:mi>P</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mo stretchy="false">(</mml:mo><mml:mi>f</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msup><mml:mi>g</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:msup><mml… 2011 Kamal Boussaf
Alain Escassut
Jacqueline Ojeda
+ PDF Chat On the coefficients of meromorphic univalent functions 1975 Derek K. Thomas
+ Algebraic independence of periods and logarithms of Drinfeld modules 2011 Chieh-Yu Chang
Matthew A. Papanikolas
+ PDF Chat Nonvanishing meromorphic univalent functions 1988 Yusuf Abu-Muhanna
Glenn Schober
+ PDF Chat Functions automorphic on large domains 1973 David A. James
+ Uniqueness for p-adic meromorphic products 2006 Karl‐Olof Lindahl