Equivariant Stable Homotopy and Segal's Burnside Ring Conjecture

Type: Article

Publication Date: 1984-09-01

Citations: 205

DOI: https://doi.org/10.2307/2006940

Locations

  • Annals of Mathematics - View

Similar Works

Action Title Year Authors
+ PDF Chat The Burnside Ring and Equivariant Stable Cohomotopy for Infinite Groups 2005 Wolfgang Lück
+ Segal’s Burnside Ring Conjecture for Compact Lie Groups 1994 Chun-Nip Lee
Norihiko Minami
+ The Burnside Ring and Equivariant Stable Cohomotopy for Infinite Groups 2005 Wolfgang Lueck
+ The Burnside ring and equivariant stable homotopy 1975 Tammo tom Dieck
Michael C. Bix
+ Equivariant algebraic K-theory of G-rings 2015 Mona Merling
+ Equivariant algebraic K-theory of G-rings 2015 Mona Merling
+ PDF Chat Equivariant properties of symmetric products 2017 Stefan Schwede
+ Equivariant algebraic K-theory 2014 Mona Merling
+ Rational torus-equivariant stable homotopy theory II: the algebra of the standard model 2011 J. P. C. Greenlees
+ Segal's Burnside ring conjecture and the homotopy limit problem 1987 Gunnar Carlsson
+ Rational torus-equivariant stable homotopy theory II: the algebra of the standard model 2011 J. P. C. Greenlees
+ PDF Chat Equivariant Burnside groups and representation theory 2022 Andrew Kresch
Yuri Tschinkel
+ PDF Chat On the relative K-group in the ETNC, Part II 2020 Oliver Bräunling
+ Multiplicativity of the idempotent splittings of the Burnside ring and the G-sphere spectrum 2019 Benjamin Böhme
+ Galois equivariance and stable motivic homotopy theory 2014 Jeremiah Heller
Kyle Ormsby
+ PDF Chat Equivariant Burnside groups and toric varieties 2022 Andrew Kresch
Yuri Tschinkel
+ PDF Chat Equivariant Stable Homotopy Theory and Idempotents of Burnside Rings 1982 Shôrô Araki
+ Proper equivariant stable homotopy theory. 2019 Dieter Degrijse
Markus Hausmann
Wolfgang Lück
Irakli Patchkoria
Stefan Schwede
+ Algebraic models of change of groups in rational stable equivariant homotopy theory 2015 J. P. C. Greenlees
+ Algebraic models of change of groups in rational stable equivariant homotopy theory 2015 J. P. C. Greenlees