Birationally rigid Fano hypersurfaces

Type: Article

Publication Date: 2002-12-31

Citations: 67

DOI: https://doi.org/10.1070/im2002v066n06abeh000413

Abstract

We prove that a smooth Fano hypersurface $V=V_M\subset{\Bbb P}^M$, $M\geq 6$, is birationally superrigid. In particular, it cannot be fibered into uniruled varieties by a non-trivial rational map and each birational map onto a minimal Fano variety of the same dimension is a biregular isomorphism. The proof is based on the method of maximal singularities combined with the connectedness principle of Shokurov and Koll\' ar.

Locations

  • Izvestiya Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat None 2003 Александр Валентинович Пухликов
+ Birationally rigid varieties with a pencil of Fano double covers. I 2003 Aleksandr V. Pukhlikov
+ PDF Chat Birational geometry of Fano direct products 2005 Aleksandr V. Pukhlikov
+ PDF Chat Birationally rigid Fano hypersurfaces with isolated singularities 2002 Aleksandr V. Pukhlikov
+ Birationally rigid Fano varieties 2003 Aleksandr V. Pukhlikov
+ Birationally rigid Fano varieties 2003 Aleksandr V. Pukhlikov
+ Birational geometry of algebraic varieties with a pencil of Fano complete intersections 2005 Александр Валентинович Пухликов
+ Birationally rigid Fano complete intersections. II 2011 Aleksandr V. Pukhlikov
+ Birationally rigid Fano complete intersections. II 2011 Aleksandr V. Pukhlikov
+ PDF Chat Birational geometry of Fano hypersurfaces of index two 2015 Александр Валентинович Пухликов
+ Birational geometry of Fano hypersurfaces of index two 2013 Aleksandr V. Pukhlikov
+ Birational geometry of Fano hypersurfaces of index two 2013 Александр Валентинович Пухликов
+ PDF Chat Birational geometry of algebraic varieties with a pencil of Fano complete intersections 2006 Александр Валентинович Пухликов
+ Fano hypersurfaces and their birational geometry 2013 Tommaso de Fernex
+ PDF Chat Fano Hypersurfaces and their Birational Geometry 2014 Tommaso de Fernex
+ Fano hypersurfaces and their birational geometry 2013 Tommaso de Fernex
+ Effective birational rigidity of Fano double hypersurfaces. 2018 Thomas Eckl
Александр Валентинович Пухликов
+ Birational geometry of singular Fano hypersurfaces of index two 2017 Aleksandr V. Pukhlikov
+ Birational geometry of singular Fano hypersurfaces of index two 2017 Александр Валентинович Пухликов
+ PDF Chat Birational geometry of singular Fano hypersurfaces of index two 2018 Александр Валентинович Пухликов