A modular algorithm for computing greatest common right divisors of Ore polynomials

Type: Article

Publication Date: 1997-01-01

Citations: 25

DOI: https://doi.org/10.1145/258726.258812

Download PDF

Abstract

Article Free Access Share on A modular algorithm for computing greatest common right divisors of Ore polynomials Authors: Ziming Li Mathematics-Mechanization Research Center, Institute of Systems Science, Beijing 100084, China Mathematics-Mechanization Research Center, Institute of Systems Science, Beijing 100084, ChinaView Profile , István Nemes Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, AustriaView Profile Authors Info & Claims ISSAC '97: Proceedings of the 1997 international symposium on Symbolic and algebraic computationJuly 1997 Pages 282–289https://doi.org/10.1145/258726.258812Published:01 July 1997Publication History 12citation1,922DownloadsMetricsTotal Citations12Total Downloads1,922Last 12 Months30Last 6 weeks2 Get Citation AlertsNew Citation Alert added!This alert has been successfully added and will be sent to:You will be notified whenever a record that you have chosen has been cited.To manage your alert preferences, click on the button below.Manage my AlertsNew Citation Alert!Please log in to your account Save to BinderSave to BinderCreate a New BinderNameCancelCreateExport CitationPublisher SiteeReaderPDF

Locations

  • CiteSeer X (The Pennsylvania State University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat MODULAR COMPUTATION FOR MATRICES OF ORE POLYNOMIALS 2007 Howard Cheng
George Labahn
+ A new modular algorithm for computation of algebraic number polynomial gcds 1989 Trevor J. Smedley
+ On computing greatest common divisors with polynomials given by black boxes for their evaluations 1995 Ángel Díaz
Erich Kaltofen
+ PDF Chat Computing greatest common divisors and factorizations in quadratic number fields 1989 Erich Kaltofen
Heinrich Rolletschek
+ A subresultant theory for Ore polynomials with applications 1998 Ziming Li
+ An Alternative Approach to Find the Greatest Common Divisor in Polynomials 2022 A.N.M. Rezaul Karim
+ PDF Chat Irreducibility and greatest common divisor algorithms for sparse polynomials 2008 Michael Filaseta
Andrew Granville
Andrzej Schinzel
+ Modulare Arithmetik 2007
+ PDF Chat Fast Modular Composition in any Characteristic 2008 Kiran S. Kedlaya
Christopher Umans
+ A new method for computing polynomial greates common divisors and polynomial remainder sequences 1988 Alkiviadis G. Akritas
+ Modulare Arithmetik 2004 Martin Aigner
+ A probabilistic and deterministic modular algorithm for computing Groebner basis over $\Q$ 2013 Bernard Parisse
+ ON THE DIVISION OF GENERALIZED POLYNOMIALS 2003 Nor’aini Aris
Ali Abd Rahman
+ GCD of polynomials and Bezout matrices 1997 Luca Gemignani
+ Polynomial byte representation and modular multiplication 2009 E. Desurvire
+ Factoring polynomials and Grobner bases 2009 Yinhua Guan
+ Modulare Arithmetik 2014 Nicola Oswald
Jörn Steuding
+ Modular Las Vegas algorithms for polynomial absolute factorization 2010 Cristina Bertone
Guillaume Chèze
André Galligo
+ The resultant and gcd computation 2013 Joachim von zur Gathen
Jürgen Gerhard
+ Algebraic factorization and GCD computation 2000 Lihong Zhi