Centralizer near-rings that are endomorphism rings

Type: Article

Publication Date: 1980-01-01

Citations: 18

DOI: https://doi.org/10.1090/s0002-9939-1980-0577742-8

Abstract

For a finite ring <italic>R</italic> with identity and a finite unital <italic>R</italic>-module <italic>V</italic> the set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper R semicolon upper V right-parenthesis equals left-brace f colon upper V right-arrow upper V vertical-bar f left-parenthesis alpha v right-parenthesis equals alpha f left-parenthesis v right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mi>V</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>v</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>α<!-- α --></mml:mi> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>v</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(R;V) = \{ f:V \to V|f(\alpha v) = \alpha f(v)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha element-of upper R comma v element-of upper V right-brace"> <mml:semantics> <mml:mrow> <mml:mi>α<!-- α --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mi>v</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>V</mml:mi> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha \in R,v \in V\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the centralizer near-ring determined by <italic>R</italic> and <italic>V</italic>. Those rings <italic>R</italic> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper R semicolon upper V right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(R;V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a ring for every <italic>R</italic>-module <italic>V</italic> are characterized. Conditions are given under which <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper R semicolon upper V right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(R;V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a semisimple ring. It is shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper R semicolon upper V right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(R;V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a semisimple ring then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C left-parenthesis upper R semicolon upper V right-parenthesis equals End Subscript upper R Baseline left-parenthesis upper V right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>C</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>;</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mtext>End</mml:mtext> <mml:mi>R</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>V</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">C(R;V) = {\text {End}_R}(V)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Simple near-ring centralizers of finite rings 1979 Carlton J. Maxson
Kirby C. Smith
+ Rings which are a Homomorphic Image of a Centralizer Near-Ring 1995 Kirby C. Smith
+ PDF Chat On rings for which homogeneous maps are linear 1991 Peter Fuchs
C. J. Maxson
Günter Pilz
+ PDF Chat Endomorphism Rings are Centralizer Near-rings 2016 Md Rezaul Islam
Satrajit Kumar Saha
+ PDF Chat 𝐼-rings 1975 W. K. Nicholson
+ Centralizers in endomorphism rings 2010 Vesselin Drensky
Jenö Szigeti
Leon van Wyk
+ Centralizer near-rings determined by PID-modules 1991 Peter Fuchs
C. J. Maxson
+ PDF Chat Endomorphism rings of torsionless modules 1971 Arun Vinayak Jategaonkar
+ PDF Chat Injective near-ring modules over 𝑍_{𝑛} 1978 J. D. P. Meldrum
+ Centralizer Near-Rings Determined by Unions of Groups 1987 Peter Fuchs
C. J. Maxson
Kirby C. Smith
+ PDF Chat Near-rings associated with matched pairs on ring modules 1994 C. J. Maxson
A. P. J. van der Walt
+ PDF Chat Finitely generated right ideals of transformation near-rings 1980 Stuart D. Scott
+ Invariant subnear-rings of regular centralizer near-rings 1983 C. J. Maxson
J. D. P. Meldrum
A. Oswald
+ PDF Chat Modules whose endomorphism rings have isomorphic maximal left and right quotient rings 1982 Soumaya Makdissi Khuri
+ PDF Chat The theory of 𝑄-rings 1974 Eben Matlis
+ PDF Chat Orders in self-injective cogenerator rings 1972 Robert C. Shock
+ PDF Chat Correspondence theorems for nondegenerate modules and their endomorphism rings 1994 Zheng Zhou
+ Minimal left ideals of centralizer near-rings 1981 Debbie Irene Gilliam
+ PDF Chat Endomorphism rings of completely pure-injective modules 1996 José Pardo
Pedro A. Guil Asensio
+ PDF Chat Properties of endomorphism rings of modules and their duals 1986 Soumaya Makdissi Khuri