Type: Article
Publication Date: 1995-01-01
Citations: 19
DOI: https://doi.org/10.1090/s0002-9939-1995-1283542-7
It is shown that every nontrivial linear or projective representation of the elementary subgroup of a Chevalley group over an algebra containing an infinite field must have degree greater than or equal to the square root of the dimension of the corresponding Chevalley-Demazure group scheme adding 1 and the equality emerges only if the Chevalley group is of type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript n"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 1"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Action | Title | Year | Authors |
---|---|---|---|
+ | Lectures on Chevalley Groups | 2016 |
Robert Steinberg |
+ PDF Chat | Chevalley groups over local rings | 1969 |
Eiichi Abe |
+ | Properties and linear representations of Chevalley groups | 1970 |
Armand Borel |
+ | Isomorphic Chevalley groups over integral domains | 1994 |
Yu Chen |