Kazhdan-Lusztig polynomials and character formula for the Lie superalgebragI(m/n)

Type: Article

Publication Date: 1996-09-01

Citations: 112

DOI: https://doi.org/10.1007/bf02433452

Locations

  • Selecta Mathematica - View

Similar Works

Action Title Year Authors
+ Kazhdan-Lusztig Polynomials and Character Formula for the Lie Superalgebra $\frak {gl}(m|n)$ 1996 Vera Serganova
+ Kazhdan-Lusztig polynomials for Lie superalgebra {𝔤𝔩}(𝔪\vert𝔫) 1993 Vera Serganova
+ Yangians of Lie superalgebras of typeA(m, n) 1995 Vladimir Stukopin
+ The Gelfand-Tseitlin basis for the Lie superalgebras gl(n|m) 1986 V.N. Tolstoy
I.F. Istomina
Yu.F. Smirnov
+ Kazhdan–Lusztig polynomials and character formulae for the Lie superalgebra q(n) 2003 Jonathan Brundan
+ Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra q(n) 2002 Jonathan Brundan
+ Polynomial identities of Lie subalgebras of M(n). 1995 Yuexiu. Zhang
+ Translation functors and Kazhdan--Lusztig multiplicities for the Lie superalgebra $\mathfrak{p}(n)$ 2016 Martina Balagović
Zajj Daugherty
Inna Entova-Aizenbud
Iva Halacheva
Johanna Hennig
Mee Seong Im
Gail Letzter
Emily Norton
Vera Serganova
Catharina Stroppel
+ PDF Chat Some properties of representations of the Lie superalgebra gl(m,n) 2008 François Drouot
+ Essentially typical representations of Lie superalgebrasgl (n|m) in the Gel'fand-Tsetlin basis 1989 Ch. D. Palev
+ PDF Chat Character and Dimension Formulae for Queer Lie Superalgebra 2014 Yucai Su
R. B. Zhang
+ Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n) 2002 Jonathan Brundan
+ Polynomial representations of $$\mathrm{GL }(n)$$ GL ( n ) and Schur–Weyl duality 2015 Henning Krause
+ Combinatorics of character formulas for the lie superalgebra $ \mathfrak{g}\mathfrak{l}\left( {m,n} \right) $ 2011 Ian M. Musson
Vera Serganova
+ The Yangian double of the Lie superalgebra A(m, n) 2006 Vladimir Stukopin
+ PDF Chat A Note on the Quantum Berezinian for the Double Yangian of the Lie Superalgebra $$\mathfrak {gl}_{m|n}$$ 2024 Lucia Bagnoli
Slaven Kožić
+ Schubert polynomials, Kazhdan–Lusztig basis and characters 2000 Yuval Roichman
+ Character and dimension formulae for finite dimensional irreducible representations of the general linear superalgebra 2004 Yucai Su
R. B. Zhang
+ PDF Chat Finite-dimensional representations of the quantum superalgebraU q[gl(n/m)] and relatedq-identities 1994 T. D. Palev
N. I. Stoilova
J. Van der Jeugt
+ Irreducible representations of the classical Lie superalgebra of type $$A(0,n)$$ in prime characteristic 2013 Yu-Feng Yao