Relative singularity categories and Gorenstein‐projective modules

Type: Article

Publication Date: 2011-01-28

Citations: 65

DOI: https://doi.org/10.1002/mana.200810017

Abstract

Abstract We introduce the notion of relative singularity category with respect to a self‐orthogonal subcategory ω of an abelian category. We introduce the Frobenius category of ω‐Cohen‐Macaulay objects, and under certain conditions, we show that the stable category of ω‐Cohen‐Macaulay objects is triangle‐equivalent to the relative singularity category. As applications, we rediscover theorems by Buchweitz, Happel and Beligiannis, which relate the stable categories of (unnecessarily finitely‐generated) Gorenstein‐projective modules to the (big) singularity categories of rings. For the case where ω is the additive closure of a self‐orthogonal object, we relate the category of ω‐Cohen‐Macaulay objects to the category of Gorenstein‐projective modules over the opposite endomorphism ring of the self‐orthogonal object. We prove that for a Gorenstein ring, the stable category of Gorenstein‐projective modules is compactly generated and its compact objects coincide with finitely‐generated Gorenstein‐projective modules up to direct summand. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

Locations

  • arXiv (Cornell University) - View - PDF
  • Mathematische Nachrichten - View

Similar Works

Action Title Year Authors
+ Relative Singularity Categories and Gorenstein-Projective Modules 2007 Xiao‐Wu Chen
+ Homological Algebra of Gorenstein Rings 2020 Harrison Henningsen
+ Gorenstein (ℒ,𝒜)-flat dimension of complexes and relative singularity categories 2023 Wenjing Chen
+ Gorenstein coresolving categories 2016 Zenghui Gao
Longyu Xu
+ PDF Chat The Singularity Category Of An Exact Category Applied To Characterize Gorenstein Schemes 2022 Lars Winther Christensen
Nanqing Ding
Sergio Estrada
Jiangsheng Hu
Huanhuan Li
Peder Thompson
+ Relative singularity categories II 2020 Huanhuan Li
Zhaoyong Huang
+ Relative singularity categories with respect to gorenstein flat modules 2017 Zhen Xing Di
Zhong Kui Liu
Xiao Xiang Zhang
+ Frobenius functors and Gorenstein homological properties 2020 Xiao‐Wu Chen
Wei Ren
+ PDF Chat Frobenius functors and Gorenstein homological properties 2022 Xiaowu Chen
Wei Ren
+ Relative Singularity categories and singular equivalences 2020 Rasool Hafezi
+ Homological dimension based on a class of Gorenstein flat modules 2022 Γεώργιος Δαλέζιος
Ioannis Emmanouil
+ Relative Singularity categories and singular equivalences 2020 Rasool Hafezi
+ PDF Chat Relative singularity categories, Gorenstein objects and silting theory 2017 Jiaqun Wei
+ The singularity category of an exact category applied to characterize Gorenstein schemes 2020 Lars Winther Christensen
Nanqing Ding
Sergio Estrada
Jiangsheng Hu
Huanhuan Li
Peder Thompson
+ PDF Chat LOCAL DUALITY FOR THE SINGULARITY CATEGORY OF A FINITE DIMENSIONAL GORENSTEIN ALGEBRA 2020 Dave Benson
Srikanth B. Iyengar
Henning Krause
Julia Pevtsova
+ On the Gorenstein defect categories 2020 Javad Asadollahi
Tahereh Dehghanpour
Rasool Hafezi
+ PDF Chat Homological dimension based on a class of Gorenstein flat modules 2023 Γεώργιος Δαλέζιος
Ioannis Emmanouil
+ Relative singularity categories, Gorenstein objects and silting theory 2015 Jiaqun Wei
+ Relative Auslander--Gorenstein Pairs 2023 Tiago Cruz
Chrysostomos Psaroudakis
+ PDF Chat One-sided Gorenstein subcategories 2019 Weiling Song
Tiwei Zhao
Zhaoyong Huang