A Graphical Method to Assess Goodness-of-Fit for Inverse Gaussian Distribution

Type: Article

Publication Date: 2013-02-28

Citations: 1

DOI: https://doi.org/10.5351/kjas.2013.26.1.037

Abstract

Q-Q 플롯은 자료에 대한 분포적 가정을 평가하기 위해서 사용되는 편리하고 효과적인 그래프 방법이다. Q-Q 플롯은 자료의 분포와 이론적 분포를 비교하기 위한 확률플롯으로 자료에서의 분위수와 이에 대응하는 이론적 분위수를 각각 수직축과 수평축으로 해서 그린 산점도의 형태를 취한다. 본 논문에서는 확률변수 X가 위치모수 <TEX>${\mu}$</TEX>와 척도수 <TEX>${\lambda}$</TEX>를 가지는 역가우스분포를 따르면, 변환된 확률변수 <TEX>$Y={\mid}\sqrt{\lambda}(X-{\mu})/{\mu}\sqrt{X}{\mid}$</TEX>는 평균이 0이고 분산이 1인 표준반접정규분포를 하게 되는 분포적 결과를 활용하여 역가우스분포 Q-Q 플롯의 구축방법을 소개한다. 역가우스분포와 다른 분포를 따르는 자료를 대상으로 그린 Q-Q 플롯에서 나타나는 점들의 형태를 알아보고자 모의실험을 수행하고 그 결과를 제시한다. 실제 자료에 대한 사례분석을 통해 제안한 Q-Q 플롯의 유용성을 보인다. A Q-Q plot is an effective and convenient graphical method to assess a distributional assumption of data. The primary step in the construction of a Q-Q plot is to obtain a closed-form expression to represent the relation between observed quantiles and theoretical quantiles to be plotted in order that the points fall near the line y = a + bx. In this paper, we introduce a Q-Q plot to assess goodness-of-fit for inverse Gaussian distribution. The procedure is based on the distributional result that a transformed random variable <TEX>$Y={\mid}\sqrt{\lambda}(X-{\mu})/{\mu}\sqrt{X}{\mid}$</TEX> follows a half-normal distribution with mean 0 and variance 1 when a random variable X has an inverse Gaussian distribution with location parameter <TEX>${\mu}$</TEX> and scale parameter <TEX>${\lambda}$</TEX>. Simulations are performed to provide a guideline to interpret the pattern of points on the proposed inverse Gaussian Q-Q plot. An illustrative example is provided to show the usefulness of the inverse Gaussian Q-Q plot.

Locations

  • Korean Journal of Applied Statistics - View - PDF

Similar Works

Action Title Year Authors
+ A new goodness-of-fit test for the inverse Gaussian distribution 2024 Hadi Alızadeh Noughabi
Mohammad Shafaei Noughabi
+ PDF Chat Multivariate empirical distribution plot and goodness-of-fit test 2017 Chong Sun Hong
Yongho Park
Jun Park
+ An efficient correction to the density-based empirical likelihood ratio goodness-of-fit test for the inverse Gaussian distribution 2016 Hadi Alızadeh Noughabi
Albert Vexler
+ Test of goodness of fit for the inverse-gaussian distribution 1999 Victor Mergel
+ An<i>R</i>Package for a General Class of Inverse Gaussian Distributions 2008 Víctor Leiva
Hugo Hernández
Antonio Sanhueza
+ Gaussian distribution and quantile plots 2010 Denny D. Tang
Yuan-Jen Lee
+ PDF Chat Kullback-Leibler Information-Based Tests of Fit for Inverse Gaussian Distribution 2011 Byungjin Choi
+ Quantile-Quantile Plots and Goodness-of-Fit Test 1999 N. Balakrishnan
William W. S. Chen
+ An efficient and accurate approximation to the distribution of quadratic forms of Gaussian variables 2020 Hong Zhang
Judong Shen
Zheyang Wu
+ Moment-Based Goodness-of-Fit Tests for the Inverse Gaussian Distribution 2004 Rajeshwari Natarajan
Govind S. Mudholkar
+ Asymptotic Confidence Ellipses of Parameters for the Inverse Gaussian Distribution 2014 Nithi Duangchana
Kamon Budsaba
+ Confidence Intervals for the Difference Between the Coefficients of Variation of Inverse Gaussian Distributions 2020 Wasana Chankham
Sa‐Aat Niwitpong
Suparat Niwitpong
+ PDF Chat Diagnostic techniques for the inverse Gaussian regression model 2020 Muhammad Amin
Muhammad Aman Ullah
Muhammad Qasim
+ Confidence Intervals for Coefficient of Variation of Inverse Gaussian Distribution 2019 Wasana Chankham
Sa‐Aat Niwitpong
Suparat Niwitpong
+ PDF Chat A Fast and Accurate Approximation to the Distributions of Quadratic Forms of Gaussian Variables 2021 Hong Zhang
Judong Shen
Zheyang Wu
+ PDF Chat Power comparison of distribution-free two sample goodness-of-fit tests 2017 Seon Bin Kim
Jae Won Lee
+ Goodness of fit test for a skewed generalized normal distribution 2024 Chengdi Lian
Ke Yang
Aidi Liu
Weihu Cheng
+ The Inverse Gaussian Distribution: Theory, Methodology, and Applications. 1990 Mohammad Ahsanullah
Raj S. Chhikara
J. Leroy Folks
+ Objective judgement on Q-Q plot for testing Laplace distribution 2021 Wanpen Chantarangsi
+ An empirical likelihood ratio based goodness-of-fit test for Inverse Gaussian distributions 2011 Albert Vexler
Guogen Shan
Seong‐Eun Kim
Wan‐Min Tsai
Lili Tian
Alan D. Hutson

Works That Cite This (0)

Action Title Year Authors