Recovery From Linear Measurements With Complexity-Matching Universal Signal Estimation

Type: Article

Publication Date: 2015-01-16

Citations: 13

DOI: https://doi.org/10.1109/tsp.2015.2393845

Locations

  • IEEE Transactions on Signal Processing - View
  • arXiv (Cornell University) - View - PDF
  • ScholarWorks@UMassAmherst (University of Massachusetts Amherst) - View - PDF

Similar Works

Action Title Year Authors
+ Recovery from Linear Measurements with Complexity-Matching Universal Signal Estimation 2012 Junan Zhu
Dror Baron
Marco F. Duarte
+ Complexity-Matching Universal Signal Estimation in Compressed Sensing 2012 Junan Zhu
Dror Baron
Marco F. Duarte
+ Signal Recovery in Compressed Sensing via Universal Priors 2012 Dror Baron
Marco F. Duarte
+ Compressed Sensing via Universal Denoising and Approximate Message Passing 2014 Yanting Ma
Junan Zhu
Dror Baron
+ PDF Chat Approximate Message Passing Algorithm With Universal Denoising and Gaussian Mixture Learning 2016 Yanting Ma
Junan Zhu
Dror Baron
+ Model-adapted Fourier sampling for generative compressed sensing 2023 Aaron Berk
Simone Brugiapaglia
Yaniv Plan
Matthew Scott
Xia Sheng
Özgür Yılmaz
+ PDF Chat Construction of a Large Class of Deterministic Sensing Matrices That Satisfy a Statistical Isometry Property 2010 Robert Calderbank
Howard Caygill
Sina Jafarpour
+ Information-theoretic limits on sparse signal recovery: Dense versus sparse measurement matrices 2008 Wei Wang
Martin J. Wainwright
Kannan Ramchandran
+ A Tutorial Introduction Compressed Sensing 2019 M. Vidyasagar
+ Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? 2004 Emmanuel J. Candès
Terence Tao
+ PDF Chat Compressed Sensing: How Sharp Is the Restricted Isometry Property? 2011 Jeffrey D. Blanchard
Coralia Cartis
Jared Tanner
+ Modern Problems in Mathematical Signal Processing: Quantized Compressed Sensing and Randomized Neural Networks 2019 Aaron A. Nelson
+ PDF Chat The Quest for Optimal Sampling: Computationally Efficient, Structure-Exploiting Measurements for Compressed Sensing 2015 Ben Adcock
Anders C. Hansen
Bogdan Roman
+ PDF Chat Compressed sensing with linear correlation between signal and measurement noise 2013 Thomas Arildsen
Torben Larsen
+ PDF Chat Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices 2012 Florent Krząkała
Marc MĂ©zard
François Sausset
Yifan Sun
Lenka Zdeborová
+ PDF Chat Expectation-Maximization Gaussian-Mixture Approximate Message Passing 2013 Jeremy Vila
Philip Schniter
+ Optimal Phase Transitions in Compressed Sensing 2011 Yihong Wu
Sergio VerdĂş
+ PDF Chat Inferring sparsity: Compressed sensing using generalized restricted Boltzmann machines 2016 Eric W. Tramel
Andre Manoel
Francesco Caltagirone
Marylou Gabrié
Florent Krząkała
+ PDF Chat A Coherence Parameter Characterizing Generative Compressed Sensing With Fourier Measurements 2022 Aaron Berk
Simone Brugiapaglia
Babhru Joshi
Yaniv Plan
Matthew Scott
Özgür Yılmaz
+ Empirical-Bayes Approaches to Recovery of Structured Sparse Signals via Approximate Message Passing 2015 Jeremy Vila