Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms

Type: Article

Publication Date: 1996-03-01

Citations: 428

DOI: https://doi.org/10.1093/biomet/83.1.95

Locations

Similar Works

Action Title Year Authors
+ Convergence rates of Metropolis–Hastings algorithms 2024 Austin Brown
Galin L. Jones
+ Hastings-Metropolis algorithms and reference measures 1998 Pei‐de Chen
+ The Metropolis-Hastings algorithm 2015 Christian P. Robert
+ Metropolis-Hastings algorithms 2006
+ Metropolis–Hastings Algorithms with acceptance ratios of nearly 1 2008 Kengo Kamatani
+ PDF Chat Rates of convergence of the Hastings and Metropolis algorithms 1996 Kerrie Mengersen
Richard L. Tweedie
+ A History of the Metropolis–Hastings Algorithm 2003 David B. Hitchcock
+ Optimal scaling for various Metropolis-Hastings algorithms 2001 Gareth O. Roberts
Jeffrey S. Rosenthal
+ Algorithmes de Metropolis-Hastings 2011 Christian P. Robert
George Casella
+ PDF Chat Geometric convergence of the Metropolis-Hastings simulation algorithm 1998 Lars Holden
+ Geometric ergodicity of Metropolis algorithms 2000 Søren Fiig Jarner
Ernst Hansen
+ PDF Chat High dimensional Markov chain Monte Carlo methods : theory, methods and applications 2016 Alain Durmus
+ PDF Chat Optimal Scaling of Random Walk Metropolis Algorithms with Non-Gaussian Proposals 2010 Peter Neal
Gareth O. Roberts
+ A Common Derivation for Metropolis-Hastings and other Markov Chain Monte Carlo Algorithms 2016 Khoa T. Tran
Robert Kohn
+ Metropolis–Hastings from a stochastic population dynamics perspective 2003 Eric Renshaw
+ Geometric Ergodicity of a Random-Walk Metropolis Algorithm via Variable Transformation and Computer Aided Reasoning in Statistics 2011 Leif T. Johnson
+ Optimal Scaling of Metropolis Algorithms on General Target Distributions 2019 Jun Yang
Gareth O. Roberts
Jeffrey S. Rosenthal
+ Metropolis Algorithms 1995 Gerhard Winkler
+ Metropolis Algorithms 2015 Martin A. Tanner
+ Metropolis Algorithms 2003 Gerhard Winkler