A generalized -expansion method for the mKdV equation with variable coefficients

Type: Article

Publication Date: 2007-11-20

Citations: 365

DOI: https://doi.org/10.1016/j.physleta.2007.11.026

Locations

  • Physics Letters A - View

Similar Works

Action Title Year Authors
+ PDF Chat The Two-Variable -Expansion Method for Solving the Nonlinear KdV-mKdV Equation 2012 E. M. E. Zayed
Mahmoud A. M. Abdelaziz
+ PDF Chat Some new exact traveling wave solutions to the simplified MCH equation and the (1 + 1)-dimensional combined KdV–mKdV equations 2014 Md. Nur Alam
M. Ali Akbar
+ Exact Solutions for mKDV-ZK Equation 2011 Tian Yi-xiu
+ Traveling wave solutions for the mKdV equation and the Gardner equations by new approach of the generalized (G′/G)-expansion method 2014 Md. Nur Alam
M. Ali Akbar
+ PDF Chat The Extended G'/G-Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations 2010 Shun-dong Zhu
+ PDF Chat Abundant Explicit and Exact Solutions for the Variable Coefficient mKdV Equations 2013 Xiaoxiao Zheng
Yadong Shang
Yong Huang
+ PDF Chat Analytical Treatment of the Evolutionary (1 + 1)-Dimensional Combined KdV-mKdV Equation via the Novel (G'/G)-Expansion Method 2015 Md. Nur Alam
Fethi Bin Muhammad Belgacem
M. Ali Akbar
+ The ()-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics 2007 Ming L. Wang
Xiangzheng Li
Jinliang Zhang
+ Exact Solutions for Coupled mKdV Equations by a New Symbolic Computation Method 2010 Bang Qing Li
Yu Lan
+ Traveling wave solutions of nonlinear evolution equations via the enhanced (G′/G)-expansion method 2013 Kamruzzaman Khan
M. Ali Akbar
+ Variable-coefficient extended mapping method for nonlinear evolution equations 2007 Sheng Zhang
Tiecheng Xia
+ The(G~(k+1)/G~k)-expansion Method and Travelling Wave Solutions of KdV Equation 2014 Han Son
+ Solutions of mKdV Equation with Variable Coefficients in Jacobi Elliptic and Periodic Functions 2011 Ruxu Lian
+ expansion Method and Its Application to the MKdV Equation 2009 Shuimeng Yu
+ G )-expansion Method and Its Applications to KDV Equation 2011 MA Xin-mou
Yutian Pan
Chang Lie-zhen
+ A connection between the (<i>G</i>′/<i>G</i>)-expansion method and the truncated Painlevé expansion method and its application to the mKdV equation 2010 Zhao Yin-Long
Liu Yin-ping
Zhibin Li
+ mKdV Equation with Variable Coefficients 2011 Caier Ye
Weiguo Zhang
+ Comparison of solutions of mKdV equation by using the first integral method and (G′/G)-expansion method 2012 N. Taghizadeh
M.Naj
+ PDF Chat Employing the exp $(-\varphi(z))$ - Expansion Method to Find Analytical Solutions for a (2+1)-dimensional Combined KdV-mKdV Equation 2022 Baixin Chen
Yongyi Gu
+ New Exact Solutions for the VGKdV-mKdV Equation with Nonlinear Terms of Any Order 2012 Baojian Hong
Dianchen Lu

Works That Cite This (298)

Action Title Year Authors
+ PDF Chat Exact traveling wave solutions of the KP-BBM equation by using the new approach of generalized (G′/G)-expansion method 2013 Md. Nur Alam
M. Ali Akbar
+ PDF Chat New Exact Solutions for a Higher Order Wave Equation of KdV Type Using MultipleG′/G-Expansion Methods 2014 Yinghui He
+ Propagation of the ultra-short femtosecond pulses and the rogue wave in an optical fiber 2020 Maha S. M. Shehata
Hadi Rezazadeh
Emad H. M. Zahran
Ahmet Bekir
+ PDF Chat Exact Solutions to the Sharma-Tasso-Olver Equation by Using Improved<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:msup><mml:mi>G</mml:mi><mml:mo>′</mml:mo></mml:msup><mml:mo>/</mml:mo><mml:mi>G</mml:mi></mml:math>-Expansion Method 2013 Yinghui He
Shaolin Li
Yao Long
+ The compound<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si17.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mfrac><mml:mrow><mml:msup><mml:mrow><mml:mi>G</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfrac><mml:mo>)</mml:mo></mml:mrow></mml:math>-expansion method and double non-traveling wave solutions of (2+1) -dimensional nonlinear partial differential equations 2015 Shimin Guo
Liquan Mei
Yubin Zhou
+ Modified extended tanh-function method and its applications to the Bogoyavlenskii equation 2015 Emad H. M. Zahran
Mostafa M. A. Khater
+ Exact solutions of the Bogoyavlenskii equation using the multiple <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si5.gif" display="inline" overflow="scroll"><mml:mrow><mml:mo>(</mml:mo><mml:mfrac><mml:mrow><mml:msup><mml:mrow><mml:mi>G</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfrac><mml:mo>)</mml:mo></mml:mrow></mml:math>-expansion method 2012 Anand Malik
Fakir Chand
Hitender Kumar
S. C. Mishra
+ PDF Chat Exact Travelling Wave Solutions for Space-Time Fractional Klein-Gordon Equation and (2+1)-Dimensional Time-Fractional Zoomeron Equation via Auxiliary Equation Method 2020 Muammer Topsakal
Filiz Taşcan
+ PDF Chat Exact Solutions for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mo stretchy="false">(</mml:mo><mml:mn>4</mml:mn><mml:mo>+</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">)</mml:mo></mml:math>-Dimensional Nonlinear Fokas Equation Using Extended<i>F</i>-Expansion Method and Its Variant 2014 Yinghui He
+ Novel solitary wave solutions to the fractional new (3+1)-dimensional Mikhailov–Novikov–Wang equation 2023 Mehmet Gençyiğit
Mehmet Şenol
Ali Kurt
Orkun Taşbozan