On the First Coefficients in $q$ of the Kazhdan-Lusztig Polynomials

Type: Article

Publication Date: 1994-06-01

Citations: 1

DOI: https://doi.org/10.3836/tjm/1270128201

Abstract

The purpose ofthis article is to find a combinatorial description ofthe first coefficient in $q$ of the Kazhdan-Lusztig polynomial (Theorem A) by introducing a left subword, which is a special one of subwords (see Def. 1.6).From its description, we show the non negativity of the first coefficient in $q$ of the Kazhdan-Lusztig polynomial for $x,$ $w$ satisfying $l(w)=l(x)+l(x^{-1}w)$ or $l(w)=l(x)+l(wx^{-1})$, where $x,$ $w$ are elements of an arbitrary Coxeter system $(W, S)$ and $l$ is the length function.In \S 1 we find a combinatorial description of the first coefficient in $q$ of the Kazhdan-Lusztig polynomial (Theorem A).In particular, for $x,$ $w\in W$ satisfying $l(w)=$ $l(x)+l(x^{-1}w)(l(w)=l(x)+l(wx^{-1}))$ , the first coefficient in $q$ is equal to $c^{-}(x, w)-$ $g(x^{-1}w)$ (resp.$c^{-}(x,$ $w)-g(wx^{-1})$ ), where $c^{-}(x, w)(g(w))$ is the number of coatoms (resp.atoms) of the interval $[x, w]$ (resp.$[e,$ $w],$ $e$ is the identity element) in the Bruhat order (see Def. 1.3).In \S 2 we give the proof of the non negativity of $c^{-}(x, w)-g(x^{-1}w)$ for $x,$ $w\in W$ satisfying $l(w)=l(x)+l(x^{-1}w)$ .Let us give a brief review of known results.It is conjectured in [KL] that all coefficients of the Kazhdan-Lusztig polynomials are non negative.This is still an open problem, but some of the special cases are verified.For example, this conjecture is correct for finite Weyl groups, affine Weyl groups and dihedral groups.M. Dyer has proved the non negativity ofthe first coefficients in $q$ of the Kazhdan-Lusztig polynomials for $e,$ $w\in W$ by showing that the first coefficient is equal to $c^{-}(e, w)-g(w)$ in this case and it is non negative ([D]).So, our results include his.\S 1. Combinatorial description of the flrst coefficient.At first, we shall define the Bruhat order and the Kazhdan-Lusztig polynomials.

Locations

  • Tokyo Journal of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Diagrammatics for Kazhdan-Lusztig R-polynomials 2018 David Plaza
+ Diagrammatics for Kazhdan-Lusztig R-polynomials 2018 David Plaza
+ Kazhdan-Lusztig polynomials for $\tilde{B}_2$ 2021 Karina Batistelli
Aram Bingham
David Plaza
+ PDF Chat Lattice paths and Kazhdan-Lusztig polynomials 1998 Francesco Brenti
+ Diagrammatics for Kazhdan–Lusztig <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll" id="d1e174" altimg="si15.gif"><mml:mover accent="true"><mml:mrow><mml:mi>R</mml:mi></mml:mrow><mml:mrow><mml:mo>̃</mml:mo></mml:mrow></mml:mover></mml:math>-polynomials 2019 David Plaza
+ A Class of Kazhdan-Lusztig R-Polynomials and q-Fibonacci Numbers 2013 William Y. C. Chen
Neil J. Y. Fan
Peter L. Guo
Michael X. X. Zhong
+ A Class of Kazhdan-Lusztig R-Polynomials and q-Fibonacci Numbers 2013 William Y. C. Chen
Neil J. Y. Fan
Peter L. Guo
Michael X. X. Zhong
+ Kazhdan-Lusztig polynomials: History Problems, and Combinatorial Invariance 2003 Francesco Brenti
+ PDF Chat On the minimal power of q in a Kazhdan–Lusztig polynomial 2024 Christian Gaetz
Yibo Gao
+ The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group $S_n$ 2004 Nanhua Xi
+ A combinatorial formula for Kazhdan-Lusztig polynomials 1994 Francesco Brenti
+ Ordering Lusztig's families in type $B_n$ 2012 Meinolf Geck
Lăcrimioara Iancu
+ Leading coefficients of the Kazhdan-Lusztig polynomials for an Affine Weyl group of type $\widetilde{B_2}$ 2008 Liping Wang
+ On the minimal power of $q$ in a Kazhdan-Lusztig polynomial 2023 Christian Gaetz
Yibo Gao
+ Ordering Lusztig's families in type $B_n$ 2012 Meinolf Geck
Lăcrimioara Iancu
+ PDF Chat KAZHDAN-LUSZTIG-POLYNOME UND UNZERLEGBARE BIMODULN ÜBER POLYNOMRINGEN 2006 Wolfgang Soergel
+ On the maximum value of the first coefficients of Kazhdan-Lusztig polynomials for symmetric groups 1994 Hiroyuki Tagawa
+ Combinatorial Expansions of Kazhdan-Lusztig Polynomials 1997 Francesco Brenti
+ Combinatorics on Bruhat graphs and Kazhdan-Lusztig polynomials 2014 Masato Kobayashi
+ Kazhdan--Lusztig cells of $\mathbf{a}$-value 2 in $\mathbf{a}(2)$-finite Coxeter systems 2021 R. M. Green
Tianyuan Xu

Works That Cite This (1)

Action Title Year Authors
+ Kazhdan–Lusztig Polynomials of Parabolic Type 1998 Hiroyuki Tagawa