Band geometry of fractional topological insulators

Type: Article

Publication Date: 2014-10-30

Citations: 170

DOI: https://doi.org/10.1103/physrevb.90.165139

Abstract

Recent numerical simulations of flat-band models with interactions which show clear evidence of fractionalized topological phases in the absence of a net magnetic field have generated a great deal of interest. We provide an explanation for these observations by showing that the physics of these systems is the same as that of conventional fractional quantum Hall phases in the lowest Landau level under certain ideal conditions which can be specified in terms of the Berry curvature and the Fubini-Study or quantum metric of the topological band. In particular, we show that when these ideal conditions hold, the density operators projected to the topological band obey the ${W}_{\ensuremath{\infty}}$ algebra. Our approach leads us to propose a way of testing the suitability of topological bands for hosting fractionalized phases.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • Physical Review B - View

Similar Works

Action Title Year Authors
+ PDF Chat Fractional topological phase in one-dimensional flat bands with nontrivial topology 2013 Jan Carl Budich
Eddy Ardonne
+ PDF Chat Topological lattice models with constant Berry curvature 2022 Dániel Varjas
Ahmed Abouelkomsan
Kang Yang
Emil J. Bergholtz
+ PDF Chat TOPOLOGICAL FLAT BAND MODELS AND FRACTIONAL CHERN INSULATORS 2013 Emil J. Bergholtz
Zhao Liu
+ Exact Landau Level Description of Geometry and Interaction in a Flatband 2021 Jie Wang
Jennifer Cano
Andrew J. Millis
Zhao Liu
Bo Yang
+ PDF Chat Fractional quantum Hall physics in topological flat bands 2013 S. A. Parameswaran
Rahul Roy
S. L. Sondhi
+ PDF Chat Impurities and Landau level mixing in a fractional quantum Hall state in a flat-band lattice model 2014 Topi Siro
Mikko M. Ervasti
Ari Harju
+ PDF Chat Band flatness optimization through complex analysis 2016 Ching Hua Lee
Daniel P. Arovas
Ronny Thomale
+ Numerical studies of band geometry of fractional topological insulators 2014 Thomas Jackson
Abishek Roy
Gunnar M oller
Rahul Roy
+ PDF Chat Flat bands with nontrivial topology in three dimensions 2012 Conan Weeks
Marcel Franz
+ Microscopic Description of the Fractional Quantum Hall Effect 2015 Pietro Rotondo
Luca Guido Molinari
Piergiorgio Ratti
Marco Gherardi
+ PDF Chat Fractional (Chern and topological) insulators 2015 Titus Neupert
Claudio Chamon
Thomas Iadecola
Luiz H. Santos
Christopher Mudry
+ PDF Chat Flat bands and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> topological phases in a non-Abelian kagome lattice 2020 Zhenxiang Gao
Zhihao Lan
+ PDF Chat Minimal entangled states and modular matrix for fractional quantum Hall effect in topological flat bands 2013 Wei Zhu
D. N. Sheng
F. D. M. Haldane
+ PDF Chat <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>SU</mml:mi><mml:mo>(</mml:mo><mml:mi>N</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> fractional quantum Hall effect in topological flat bands 2018 Tian-Sheng Zeng
D. N. Sheng
+ PDF Chat Zoology of Fractional Chern Insulators 2012 Yang-Le Wu
B. Andrei Bernevig
Nicolas Regnault
+ PDF Chat Fractionalized topological insulators 2015 Joseph Maciejko
Gregory A. Fiete
+ PDF Chat Flat Band in Topological Matter 2013 Grigori Volovik
+ PDF Chat Topological characterization of hierarchical fractional quantum Hall effects in topological flat bands with SU( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> ) symmetry 2019 Tian-Sheng Zeng
D. N. Sheng
W. Zhu
+ PDF Chat Zoology of fractional Chern insulators 2012 Yang-Le Wu
B. Andrei Bernevig
Nicolas Regnault
+ Composite Fermions for Fractionally Filled Chern Bands 2011 Ganpathy Murthy
R. Shankar