Universality of covariance matrices

Type: Article

Publication Date: 2014-04-23

Citations: 106

DOI: https://doi.org/10.1214/13-aap939

Abstract

In this paper we prove the universality of covariance matrices of the form $H_{N\times N}={X}^{\dagger}X$ where $X$ is an ${M\times N}$ rectangular matrix with independent real valued entries $x_{ij}$ satisfying $\mathbb{E}x_{ij}=0$ and $\mathbb{E}x^2_{ij}={\frac{1}{M}}$, $N$, $M\to \infty$. Furthermore it is assumed that these entries have sub-exponential tails or sufficiently high number of moments. We will study the asymptotics in the regime $N/M=d_N\in(0,\infty),\lim_{N\to\infty}d_N\neq0,\infty$. Our main result is the edge universality of the sample covariance matrix at both edges of the spectrum. In the case $\lim_{N\to\infty}d_N=1$, we only focus on the largest eigenvalue. Our proof is based on a novel version of the Green function comparison theorem for data matrices with dependent entries. En route to proving edge universality, we establish that the Stieltjes transform of the empirical eigenvalue distribution of $H$ is given by the Marcenko-Pastur law uniformly up to the edges of the spectrum with an error of order $(N\eta)^{-1}$ where $\eta$ is the imaginary part of the spectral parameter in the Stieltjes transform. Combining these results with existing techniques we also show bulk universality of covariance matrices. All our results hold for both real and complex valued entries.

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View
  • The Annals of Applied Probability - View - PDF

Similar Works

Action Title Year Authors
+ Edge universality of correlation matrices 2012 Natesh S. Pillai
Jun Yin
+ Edge universality of separable covariance matrices 2019 Fan Yang
+ PDF Chat A necessary and sufficient condition for edge universality at the largest singular values of covariance matrices 2018 Xiucai Ding
Fan Yang
+ Random covariance matrices: Universality of local statistics of eigenvalues up to the edge 2011 Ke Wang
+ Universality for the largest eigenvalue of a class of sample covariance matrices 2013 Zhigang Bao
Guangming Pan
Zhou Wang
+ PDF Chat RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES UP TO THE EDGE 2011 Ke Wang
+ Universality for the largest eigenvalue of sample covariance matrices with general population 2015 Zhigang Bao
Guangming Pan
Zhou Wang
+ PDF Chat Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge 2010 Terence Tao
Van Vu
+ Universality in Gaussian random normal matrices 2012 Roman Riser
+ Universality in Gaussian Random Normal Matrices 2013 Roman Riser
+ Local laws of random matrices and their applications 2019 Fan Yang
+ The universality principle for spectral distributions of sample covariance matrices 2014 Pavel Yaskov
+ Random matrices: Universality of ESDs and the circular law 2008 Terence Tao
Van Vu
Manjunath Krishnapur
+ Edge universality of correlated Gaussians 2019 Arka Adhikari
Ziliang Che
+ PDF Chat Universality for Diagonal Eigenvector Overlaps of non-Hermitian Random Matrices 2024 Mohammed Osman
+ Random covariance matrices: Universality of local statistics of eigenvalues 2012 Terence Tao
Van Vu
+ PDF Chat Random matrices: Universality of ESDs and the circular law 2010 Terence Tao
Van Vu
Manjunath Krishnapur
+ Universality of the ESD for a fixed matrix plus small random noise: a stability approach 2014 Philip Matchett Wood
+ Universality of the ESD for a fixed matrix plus small random noise: a stability approach 2014 Philip Matchett Wood
+ Universality results for largest eigenvalues of some sample covariance matrix ensembles 2007 Sandrine Péché